
Digi XBee® Cellular LTE Cat 1
Embedded Modem

User Guide

Revision history—90001525

Revision Date Description

Y October 2020 Updated Transmit (TX) Status - 0x89.

Z November
2020

Added information for File system API frames.
Updated Software libraries.

AA January 2021 Updated Socket Connect - 0x42.
Updated Socket Connect Response - 0xC2.
Added design recommendations for SIM cards.

AB May 2021 Updated the example to include information about Allow Offline
option.
Updated Enable SM/UDP.

AC August 2021 Added Safety instructions.
Updated Clean shutdown.

AD January 2022 Updated Cellular service.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2022 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:

 Product name and model
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 2

http://www.digi.com/howtobuy/terms

 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi XBee Cellular LTE Cat 1 Embedded Modem User
Guide, 90001525 X) in the subject line of your email.

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide
Applicable firmware and hardware 15
Safety instructions 16

XBee modules 16
SIM cards 16
Cellular service 17

Get started with the XBee Cellular Modem
Identify the kit contents 19
Connect the hardware 20
Install and upgrade XCTU 21

Add a device to XCTU 21
Update the device and cellular firmware using XCTU 22
Check for cellular registration and connection 22

XBee connection examples
Connect to the Echo server 24
Connect to the ELIZA server 26
Connect to the Daytime server 28
Send an SMS message to a phone 30
Perform a (GET) HTTP request 32
Connect to a TCP/IP address 34
Software libraries 34
Debugging 35

Get started with MicroPython
About MicroPython 37

Why use MicroPython 37
MicroPython on the XBee Cellular Modem 37
Use XCTU to enter the MicroPython environment 37
Use the MicroPython Terminal in XCTU 38

Troubleshooting 38
Example: hello world 38
Example: turn on an LED 38
Example: code a request help button 39

Enter MicroPython paste mode 40

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 4

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 5

Catch a button press 40
Send a text (SMS) when the button is pressed 42
Add the time the button was pressed 43

Example: debug the secondary UART 44
Exit MicroPython mode 44
Other terminal programs 45

Tera Term for Windows 45
Use picocom in Linux 46

Get started with Digi Remote Manager
Create a Remote Manager account and add devices 48

Create a Remote Manager account 49
Add an XBee Cellular Modem to Remote Manager 49
Verify the connection between a device and Remote Manager 50

Configure Remote Manager features by scheduling tasks 50
Overview: Create a schedule for a set of tasks 51
Examples 51
Example: Read settings and state using Remote Manager 51
Example: Configure a device from Remote Manager using XML 52
Example: Schedule a task to update the device firmware using Remote Manager 53
Example: Update MicroPython from Remote Manager using XML 54

Manage data in Remote Manager 58
Review device status information from Remote Manager 58
Manage secure files in Remote Manager 59

Remote Manager reference 60
Enable SM/UDP 60
TCP connection 60
Disconnect 62
Configure XBee settings within Remote Manager 62

Examples: IOT protocols with transparent mode
Get started with CoAP 65

CoAP terms 65
CoAP quick start example 65
Configure the device 66
Example: manually perform a CoAP request 66
Example: use Python to generate a CoAP message 67

Get started with MQTT 69
Example: MQTT connect 69
Send a connect packet 71
Example: send messages (publish) with MQTT 72
Example: receive messages (subscribe) with MQTT 73
Use MQTT over the XBee Cellular Modem with a PC 74

Update the firmware
Create a plan for device and cellular component firmware updates 79
Update the device and the cellular firmware using XCTU 80

Update the device and cellular firmware using XCTU 80
Update the device firmware 82

Update the firmware from the Devices page in Remote Manager 82

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 6

Update the firmware using web services in Remote Manager 83
Use a host processor to update the modem firmware for XBee devices over UART 85

Update the cellular firmware 88
Update the cellular component firmware using Remote Manager 88
Update the cellular firmware using the API 91

Technical specifications
Interface and hardware specifications 95
RF characteristics 95
Networking specifications 95
Power requirements 95
Power consumption 96
Electrical specifications 96
Regulatory approvals 97

Hardware
Mechanical drawings 99
Pin signals 99

Pin connection recommendations 101
XBee header connector requirements 101
RSSI PWM 101
SIM card 102
Associate LED functionality 102
Development boards 103

XBIB-U-DEV reference 103
XBIB-CU-TH reference 106
XBIB-C-GPS reference 110
Interface with the XBIB-C-GPS module 111

Antenna recommendations
Antenna specifications 113
Antenna connections 113
Antenna placement 114
RF exposure 114

Design recommendations
Power supply considerations 116
Add a capacitor to the RESET line 116
Heat considerations and testing 116
Heat sink guidelines 118

Bolt-down style 118
Adhesive style heat sink 118

Add a fan to provide active cooling 119
Custom configuration: Create a new factory default 120

Set a custom configuration 120
Clear all custom configurations on a device 120

Clean shutdown 120
SD (Shutdown) command 120

SIM cards 121

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 7

Cellular connection process
Connecting 123

Cellular network 123
Data network connection 123

Data communication with remote servers (TCP/UDP) 123
Disconnecting 123

Modes
Select an operating mode 126
Transparent operating mode 127
API operating mode 127
Bypass operating mode (DEPRECATED) 127

Enter Bypass operating mode 128
Leave Bypass operating mode 128
Restore cellular settings to default in Bypass operating mode 128

Command mode 128
Enter Command mode 128
Troubleshooting 129
Send AT commands 129
Response to AT commands 130
Apply command changes 130
Make command changes permanent 130
Exit Command mode 130

MicroPython mode 130

Sleep modes
About sleep modes 133
Normal mode 133
Pin sleep mode 133
Cyclic sleep mode 133
Cyclic sleep with pin wake up mode 133
Airplane mode 133
Connected sleep mode 133
The sleep timer 134
MicroPython sleep behavior 134

Serial communication
Serial interface 136
Serial data 136
UART data flow 136
Serial buffers 137
CTS flow control 137
RTS flow control 137

SPI operation
SPI communications 139
Full duplex operation 139

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 8

Low power operation 140
Select the SPI port 141
Force UART operation 142
Data format 142

File system
Overview of the file system 144

Directory structure 144
Paths 144
Secure files 144

XCTU interface 145
Encrypt files 145

SMS behaviors
SMS encoding 146

Socket behavior
Supported sockets 148
Best practices when using sockets 148

Sockets and Remote Manager 148
Sockets and API mode 148

Socket timeouts 148
Socket limits in API mode 148
UDP datagram size limits 149
Enable incoming TCP connections 149
API mode behavior for outgoing TCP and TLS connections 149
API mode behavior for outgoing UDP data 150
API mode behavior for incoming TCP connections 150
API mode behavior for incoming UDP data 151
Transparent mode behavior for outgoing TCP and TLS connections 151
Transparent mode behavior for outgoing UDP data 151
Transparent mode behavior for incoming TCP connections 152
Transparent mode behavior for incoming UDP connections 152

Extended Socket frames
Examples 153
Available Extended Socket frames 154
Extended Socket example: Single HTTP Connection 154

Send a Socket Create frame 154
Receive a Socket Create response 155
Send Socket Connect 155
Receive a Socket Connect Response 155
Receive a Socket Status 156
Send HTTP Request using Socket Send frame 156
Receive TX Status 157
Receive one or more Receive Data frames 157
Receive Socket Status indicating closed connection 158

Extended Socket example: UDP 158
Send a Socket Create frame 158

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 9

Receive a Socket Create response 159
Bind local source addres 159
Receive Bind/Listen Response 159
Send to Digi echo server 160
Receive TX Status 160
Receive echoed data 160
Send to Digi time server 161
Receive TX Status 161
Receive daytime value 161
Close the socket 162
Receive close response 162

Extended Socket example: TCP Listener 163
Send a Socket Create frame 163
Receive a Socket Create response 163
Designate the socket as a listener 163
Receive a Socket Bind/Listen Response 164
Making a connection to the listener socket 164
Receiving Data from the new socket 165
Receive a Socket Status indicating closed connection 165

Transport Layer Security (TLS)
Specifying TLS keys and certificates 168
Transparent mode and TLS 169
API mode and TLS 169
Key formats 169
Certificate limitations 169
Cipher suites 169
Server Name Indication (SNI) 170
Secure the connection between an XBee and Remote Manager with server authentication 170

Step 1: Get the certificate 170
Step 2: Configure device 170
Step 3: Verify that authentication is being performed 170

AT commands
Special commands 173

AC (Apply Changes) 173
FR (Force Reset) 173
RE command 173
SD (Shutdown) 174
WR (Write) 174
HI (Hardware Identity) 174

Cellular commands 176
PH (Phone Number) 176
S# (ICCID) 176
IM (IMEI) 176
II (Subscriber identity) 176
MN (Operator) 176
MV (Modem Firmware Version) 177
MU (Modem firmware revision number) 177
DB (Cellular Signal Strength) 177
DT (Cellular Network Time) 177
AN (Access Point Name) 178

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 10

AM (Airplane Mode) 178
OA (Operating APN) 179
DV (Secondary Antenna Function Switch) 179
SQ (Reference Signal Received Quality) 179
SW (Reference Signal Received POWER) 180
PN (SIM PIN) 180
PK (SIM PUK) 180
CU (Cellular user name) 181
CW (Cellular password) 181
FC (Frequency Channel Number) 181
OT (Operating Technology) 182

Network commands 183
IP (IP Protocol) 183
TL (TLS Protocol Version) 183
$0 (TLS Profile 0) 183
$1 (TLS Profile 1) 184
$2 (TLS Profile 2) 184
TM (IP Client Connection Timeout) 184
TS (IP Server Connection Timeout) 185
DO (Device Options) 185
PG (Ping) 185

Addressing commands 187
SH (Serial Number High) 187
SL (Serial Number Low) 187
MY (Module IP Address) 187
P# (Destination Phone Number) 187
N1 (DNS Address) 188
N2 (DNS Address) 188
DL (Destination Address) 188
OD (Operating Destination Address) 188
DE (Destination port) 189
C0 (Source Port) 189
LA (Lookup IP Address of FQDN) 189

Serial interfacing commands 191
BD (Baud Rate) 191
NB (Parity) 191
SB (Stop Bits) 192
RO (Packetization Timeout) 192
TD (Text Delimiter) 192
FT (Flow Control Threshold) 192
AP (API Enable) 193

I/O settings commands 194
D0 (DIO0/AD0) 194
D1 (DIO1/AD1) 194
D2 (DIO2/AD2) 195
D3 (DIO3/AD3) 195
D4 (DIO4) 195
D5 (DIO5/ASSOCIATED_INDICATOR) 196
D6 (DIO6/RTS) 196
D7 (DIO7/CTS) 197
D8 (DIO8/SLEEP_REQUEST) 197
D9 (DIO9/ON_SLEEP) 198
P0 (DIO10/PWM0 Configuration) 198
P1 (DIO11/PWM1 Configuration) 198
P2 (DIO12 Configuration) 199

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 11

PD (Pull Direction) 199
PR (Pull-up/down Resistor Enable) 200
M0 (PWM0 Duty Cycle) 201

I/O sampling commands 202
TP (Temperature) 202
IS (Force Sample) 202

Sleep commands 204
SM (Sleep Mode) 204
SP (Sleep Period) 204
ST (Wake Time) 204
SO (Sleep Options) 205

Command mode options 206
CC (Command Sequence Character) 206
CT (Command Mode Timeout) 206
CN (Exit Command mode) 206
GT (Guard Times) 206

MicroPython commands 208
PS (Python Startup) 208
PY (MicroPython Command) 208

Firmware version/information commands 210
VR (Firmware Version) 210
VL (Verbose Firmware Version) 210
HV (Hardware Version) 210
HS (Hardware Series) 210
%C (Hardware/Software Compatibility) 210
CK (Configuration CRC) 211
AI (Association Indication) 211
FI (FTP OTA Update Indication) 212
FO (FTP OTA command) 212

Diagnostic interface commands 214
DI (Remote Manager Indicator) 214
CI (Protocol/Connection Indication) 214
AS (Active scan for network environment data) 216

Execution commands 218
NR (Network Reset) 218
!R (Modem Reset) 218

File system commands 219
Error responses 219
ATFS (File System) 219
ATFS PWD 219
ATFS CD directory 219
ATFS MD directory 219
ATFS LS [directory] 219
ATFS PUT filename 220
ATFS XPUT filename 220
ATFS HASH filename 220
ATFS GET filename 220
ATFS MV source_path dest_path 220
ATFS RM file_or_directory 220
ATFS INFO 220
ATFS FORMAT confirm 221

Remote Manager commands 222
MO (Remote Manager Options) 222
DF (Remote Manager Status Check Interval) 222
EQ (Remote Manager FQDN) 222

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 12

K1 (Remote Manager Server Send Keepalive) 222
K2 (Remote Manager Device Send Keepalive) 223
$D (Remote Manager certificate) 223
ER (Remote Manager TCP Port Override) 223
ES (Remote Manager UDP Port Override) 224
MT (Remote Manager Idle Timeout) 224

System commands 225
KL (Device Location) 225
KC (Contact Information) 225
KP (Device Description) 225

Socket commands 226
SI (Socket Info) 226

Operate in API mode
API mode overview 229
Use the AP command to set the operation mode 229
API frame format 229

API operation (AP parameter = 1) 229
API operation with escaped characters (AP parameter = 2) 230

API frames
AT Command - 0x08 234
AT Command: Queue Parameter Value - 0x09 235
Transmit (TX) SMS - 0x1F 236
Transmit (TX) Request: IPv4 - 0x20 237
Tx Request with TLS Profile - 0x23 239
AT Command Response - 0x88 241
Transmit (TX) Status - 0x89 242
Modem Status - 0x8A 244
Receive (RX) Packet: SMS - 0x9F 245
Receive (RX) Packet: IPv4 - 0xB0 246
User Data Relay - 0x2D 247

Example use cases 247
User Data Relay Output - 0xAD 248
FW Update - 0x2B 249
FW Update Response - 0xAB 250
Socket Create - 0x40 251
Socket Create Response - 0xC0 252
Socket Option Request - 0x41 253
Socket Option Response - 0xC1 254
Socket Connect - 0x42 255
Socket Connect Response - 0xC2 256
Socket Close - 0x43 257
Socket Close Response - 0xC3 258
Socket Send (Transmit) - 0x44 259
Socket SendTo (Transmit Explicit Data): IPv4 - 0x45 260
Socket Bind/Listen - 0x46 261
Socket Listen Response - 0xC6 262
Socket New IPv4 Client - 0xCC 263
Socket Receive - 0xCD 264
Socket Receive From: IPv4 - 0xCE 265
Socket Status - 0xCF 266

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 13

File system API frames
Local File System Request - 0x3B 268

File Open - 0x01 270
File Close - 0x02 271
File Read - 0x03 272
File Write - 0x04 273
File Hash - 0x08 274
Directory Create - 0x10 275
Directory Open - 0x11 276
Directory Close - 0x12 278
Directory Read - 0x13 279
Get Path ID - 0x1C 280
Rename - 0x21 281
Delete - 0x2F 282
Volume Info - 0x40 283
Volume Format - 0x4F 284

Local File System Response - 0xBB 285

Troubleshooting
Cannot find the serial port for the device 288

Condition 288
Solution 288
Other possible issues 289
Enable Virtual COM port (VCP) on the driver 289

Correct a macOS Java error 290
Condition 290
Solution 290

Unresponsive cellular component in Bypass mode 291
Condition 291
Solution 291

Not on expected network after APN change 292
Condition 292
Solution 292

Syntax error at line 1 292
Solution 292

Error Failed to send SMS 292
Solution 292

Regulatory information
Modification statement 294
Interference statement 294
FCC notices 294
FCC Class B digital device notice 294
Labeling requirements for the host device 295
FCC publication 996369 related information 295

2.1 General 295
2.2 List of applicable FCC rules 295
2.3 Summarize the specific operational use conditions 296
2.4 Limited module procedures 296
2.5 Trace antenna designs 296
2.6 RF exposure considerations 296

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 14

2.7 Antennas 296
2.8 Label and compliance information 296
2.9 Information on test modes and additional testing requirements 296
2.10 Additional testing, Part 15 Subpart B disclaimer 296

Digi XBee Cellular LTE Cat 1 Embedded Modem User
Guide

The XBee Cellular Modem is an embedded Long-Term Evolution (LTE) Category 1 cellular module that
provides original equipment manufacturers (OEMs) with a simple way to integrate cellular
connectivity into their devices.
The XBee Cellular Modem enables OEMs to quickly integrate cutting edge 4G cellular technology into
their devices and applications without dealing with the painful, time-consuming, and expensive FCC
and carrier end-device certifications.
With the full suite of standard XBee API frames and AT commands, existing XBee customers can
seamlessly transition to this new device with only minor software adjustments. When OEMs add the
XBee Cellular Modem to their product, they create a future-proof design with flexibility to switch
between wireless protocols or frequencies as needed.
You can read some frequently asked questions here.

Applicable firmware and hardware
This manual supports the following firmware:

n 100A and above

Note This manual uses the placeholder value "xx" in the firmware versions listed above, as the
manual documents the released features as of the time of its writing. Digi International periodically
releases new firmware containing bug fixes and new features. As new firmware is released and
distributor stock is refreshed, the new firmware will gradually become available without the need to
update. However, no guarantees can be made that a specific version of the firmware will be populated
on any given XBee as delivered. If a specific revision is desired, it is the user's responsibility to ensure
that version is loaded onto all XBees purchased.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

It supports the following hardware:

n XBC-V1-UT-xxx

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 15

https://www.digi.com/products/xbee-rf-solutions/embedded-cellular-modems/digi-xbee-cellular#faq

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide Safety instructions

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 16

Safety instructions

XBee modules
n The XBee radio module cannot be guaranteed operation due to the radio link and so should not

be used for interlocks in safety critical devices such as machines or automotive applications.
n The XBee radio module has not been approved for use in (this list is not exhaustive):

l medical devices
l nuclear applications
l explosive or flammable atmospheres

n There are no user serviceable components inside the XBee radio module. Do not remove the
shield or modify the XBee in any way. Modifications may exclude the module from any warranty
and can cause the XBee radio to operate outside of regulatory compliance for a given country,
leading to the possible illegal operation of the radio.

n Use industry standard ESD protection when handling the XBee module.
n Take care while handling to avoid electrical damage to the PCB and components.
n Do not expose XBee radio modules to water or moisture.
n Use this product with the antennas specified in the XBee module user guides.
n The end user must be told how to remove power from the XBee radio module or to locate the

antennas 20 cm from humans or animals.

SIM cards
If you order the wrong type of SIM card it will not work with the XBee Cellular Modem.
Verizon recommends SIM SKU: M2MTRI-NONRUG-GT-A or an equivalent that must include a 4FF punch
out. This SKU is in triple punch, so devices with 2FF/3FF or 4FF can use this SIM SKU.
Bulk SIMs for M2M/IoT are available from:

National
distributor Network Contact

Phone
number Email

Reliance
Communications

Verizon
direct

Raja Ali 917-517-
7282

raja.ali@reliance.us

Ingram Micro - Sales Verizon
direct

Lesli Reeves 317-707-
2371

lesli.reeves@ingrammicro.com

Ingram Micro - Sales Verizon
direct

Steve
Kreiger

317-707-
2474

steve.kreiger@ingrammicro.com

Ice Mobility Verizon
direct

Tom Puchala 847-876-
1768

tom.puchala@icemobility.com

KORE Verizon
MVNO

Genesis
Crowder

877-710-
5673

gcrowder@korewireless.com

KORE Verizon
MVNO

Mike Basso 877-710-
5673

mbasso@korewireless.com

http://www.reliance.us/index.cfm
http://www.reliance.us/index.cfm
mailto:raja.ali@reliance.us
http://www.ingrammicro.com/
mailto:lesli.reeves@ingrammicro.com
http://www.ingrammicro.com/
mailto:steve.kreiger@ingrammicro.com
https://www.icemobility.com/
mailto:tom.puchala@icemobility.com
http://www.koretelematics.com/
mailto:gcrowder@korewireless.com
http://www.koretelematics.com/
mailto:mbasso@korewireless.com

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide Cellular service

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 17

Cellular service
Digi now offers Cellular Bundled Service plans. This service includes pre-configured cellular data
options that are ideal for IoT applications, bundled together with Digi Remote Manager for customers
who want to remotely monitor and manage their devices.
To learn more, or obtain the plan that is right for your needs, contact us:

n By phone: 1-877-890-4014 (USA/toll free) or +1-952-912-3456 (International). Select the
Wireless Plan Support or Activation option in the menu.

n By email: Data.Plan.QuoteDesk@digi.com.

mailto:Data.Plan.QuoteDesk@digi.com?subject=Cellular Bundled Service plans

Get started with the XBee Cellular Modem

This section describes how to connect the hardware in the XBee, and provides some examples you can
use to communicate with the device.
You should perform all of the steps below in the order shown.

1. Identify the kit contents
2. Connect the hardware
3. Install and upgrade XCTU
4. Use one of the following methods to verify your cellular connection:

n Connect to the Echo server
n Connect to the ELIZA server
n Connect to the Daytime server

Optional steps
You can review the information in these steps for more XBee connection examples and examples of
how to use MicroPython.

1. Review additional connection examples to help you learn how to use the device. See XBee
connection examples.

2. Review introductory MicroPython examples. You can use MicroPython to enhance the
intelligence of the XBee to enable you to do edge-computing by adding business logic in
MicroPython, rather than using external components.

n Example: hello world
n Example: turn on an LED

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 18

Get started with the XBee Cellular Modem Identify the kit contents

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 19

Identify the kit contents
The Developer's kit includes the following:

One XBIB-U-DEV board

One 12 V power supply

Two cellular antennas with U.FL
connectors

One USB cable

One XBee Cellular Modem

Note The XBee Cellular Modem comes
attached to the board in ESD wrap.

One SIM card

Get started with the XBee Cellular Modem Connect the hardware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 20

Connect the hardware

1. The XBee Cellular Modem should already be plugged into the XBIB-U-DEV board. For more
information about development boards, see Development boards.

2. The SIM card should be already be inserted into the XBee Cellular Modem. If not, install the
SIM card into the XBee Cellular Modem.

WARNING! Never insert or remove the SIM card while the device is powered!

3. Connect the antennas to the XBee Cellular Modem. Align the U.FL connectors carefully, then
firmly press straight down to seat the connector. You should hear a snap when the antenna
attaches correctly. U.FL is fragile and is not designed for multiple insertions, so exercise
caution when connecting or removing the antennas. We recommend using a U.FL removal tool.

4. Plug the 12 V power supply to the power jack on the development board.
5. Connect the USB cable from a PC to the USB port on the development board. The computer

searches for a driver, which can take a few minutes to install.

Get started with the XBee Cellular Modem Install and upgrade XCTU

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 21

Install and upgrade XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program developed by Digi that enables
users to interact with Digi radio frequency (RF) devices through a graphical interface. The application
includes built-in tools that make it easy to set up, configure, and test Digi RF devices.
XCTU does not work directly over an SPI interface.
You can use XCTU to update the device firmware, and if needed, XCTU will attempt to update your
cellular firmware. Firmware is the program code stored in the device's persistent memory that
provides the control program for the device.
For instructions on downloading and using XCTU, see the XCTU User Guide.

Note If you are on a macOS computer and encounter problems installing XCTU, see Correct a macOS
Java error.

Step 1: Install and upgrade XCTU
You can use XCTU to update the device firmware.

1. To use XCTU, you may need to install FTDI Virtual COM port (VCP) drivers onto your computer.
Click here to download the drivers for your operating system.

2. Upgrade XCTU to the latest version. This step is required.

Step 2: Add a device to XCTU
You must add a device to XCTU before you can update the device's firmware or configure the device
from XCTU.

Add a device to XCTU
These instructions show you how to add the XBee to XCTU.
If XCTU does not find your serial port, see Cannot find the serial port for the device and Enable Virtual
COM port (VCP) on the driver.

1. Launch XCTU .

Note XCTU's Update the radio module firmware dialog box may open and will not allow you
to continue until you click Update or Cancel on the dialog.

2. Click Help > Check for XCTU Updates to ensure you are using the latest version of XCTU.

3. Click the Discover radio modules button in the upper left side of the XCTU screen.

4. In the Discover radio devices dialog, select the serial ports where you want to look for XBee
modules, and click Next.

5. In the Set port parameters window, maintain the default values and click Finish.
6. As XCTU locates radio modules, they appear in the Discovering radio modules dialog box.
7. Select the device(s) you want to add and click Add selected devices.

If your module could not be found, XCTU displays the Could not find any radio module dialog
providing possible reasons why the module could not be added.

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
http://www.ftdichip.com/Drivers/VCP.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_install_xctu_updates.htm%3FTocPath%3DUpdate%2520software|_____3

Get started with the XBee Cellular Modem Update the device and cellular firmware using XCTU

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 22

Update the device and cellular firmware using XCTU
You should use XCTU to update the device firmware on your XBee to the most recent version. This
ensures that you can take advantage of all the latest fixes and features. XCTU will update the device
firmware, and if needed, XCTU will attempt to update your cellular firmware.
Update the device and cellular firmware using XCTU.

Check for cellular registration and connection
The cellular network registration and address assignment must occur successfully. To verify the
network connection, you can view the LED on the development board or check the status of the
relevant commands in XCTU.
Registration can take several minutes.
Before you begin

n Make sure you have added the device to XCTU. See Add a device to XCTU.
n Make sure you are in an area with adequate cellular network reception.
n Verify that the antennas are connected properly to the device.

View LED action
The LED on the development board blinks when the XBee is registered to the cellular network; see
Associate LED functionality. If the LED remains solid, registration has not occurred properly.

View commands in SCTU

1. Launch XCTU .

2. Click the Configuration working mode button.
3. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.
4. Verify the status of your network connection using the following commands:

n AI (Association Indication) reads 0 when the device successfully registers to the
cellular network and the LED is blinking. If it reads 23 it is connecting to the Internet; 22
means it is registering to the cellular network.

n MY (Module IP Address) should display a valid IP address. If it reads 0.0.0.0, it has not
registered yet.

Hints

n To search for an AT command in XCTU, use the search box .

n To read a command's value, click the Read button next to the command.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_search_for_firmware_setting.htm

XBee connection examples

The following examples provide some additional scenarios you can try to get familiar with the XBee.
These examples are focused on inter-operating with a host processor to drive the XBee.
If you are interested in using the intelligence built into the XBee, see Get started with MicroPython.

Note Some carriers restrict your internet access. If access is restricted, running some of these
examples may not be possible. Check with your carrier provider to determine whether internet access
is restricted.

Connect to the Echo server 24
Connect to the ELIZA server 26
Connect to the Daytime server 28
Send an SMS message to a phone 30
Perform a (GET) HTTP request 32
Connect to a TCP/IP address 34
Software libraries 34
Debugging 35

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 23

XBee connection examples Connect to the Echo server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 24

Connect to the Echo server
This server echoes back the messages you type.

Note For help with debugging, see Debugging.

The following table explains the AT commands that you use in this example.

At command Value Description

IP (IP
Protocol)

1 Set the expected
transmission mode to
TCP communications.

TD (Text
Delimiter)

D (0x0D) The text delimiter to be
used for Transparent
mode, as an ASCII hex
code. No information is
sent until this character
is entered, unless the
maximum number of
characters has been
reached. Set to 0 to
disable text delimiter
checking. Set to D for a
carriage return.

DL
(Destination
Address)

52.43.121.77 The target IP address of
the echo server.

DE
(Destination
Port)

2329 (0x2329) The target port number
of the echo server.

To communicate with the Echo server:

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. To switch to TCP communication, in the IP field, select 1 and click the Write button .
6. To enable the XBee to recognize carriage return as a message delimiter, in the TD field, type D

and click the Write button.
7. To enter the destination address of the echo server, in the DL field, type 52.43.121.77 and click

the Write button.
8. To enter the destination IP port number, in the DE field, type 2329 and click the Write button.

XBee connection examples Connect to the Echo server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 25

Note XCTU does not follow the standard hexadecimal numbering convention. The leading 0x is
not needed in XCTU.

9. Click the Consoles working mode button on the toolbar to open a serial console to the
device. For instructions on using the Console, see the AT console topic in the XCTU User Guide.

10. Click the Open button to open a serial connection to the device.
11. Click in the left pane of the Console log, then type in the Console to talk to the echo server.

The following screenshot provides an example of this chat.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_at_console.htm

XBee connection examples Connect to the ELIZA server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 26

Connect to the ELIZA server
You can use the XBee to chat with the ELIZA Therapist Bot. ELIZA is an artificial intelligence (AI) bot
that emulates a therapist and can perform simple conversations.

Note For help with debugging, see Debugging.

The following table explains the AT commands that you use in this example.

At command Value Description

IP (IP Protocol) 1 Set the expected
transmission mode to TCP
communications.

DL (Destination
Address)

52.43.121.77 The target IP address of the
ELIZA server.

DE (Destination
Port)

2328 (0x2328) The target port number of
the ELIZA server.

To communicate with the ELIZA Therapist Bot:

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. To switch to TCP communication, in the IP field, select 1 and click the Write button .
6. To enter the destination address of the ELIZA Therapist Bot, in the DL field, type 52.43.121.77

and click the Write button.
7. To enter the destination IP port number, in the DE field, type 2328 and click the Write button.

8. Click the Consoles working mode button on the toolbar to open a serial console to the
device. For instructions on using the Console, see the AT console topic in the XCTU User Guide.

9. Click the Open button to open a serial connection to the device.
10. Click in the left pane of the Console log, then type in the Console to talk to the ELIZA Therapist

Bot. The following screenshot provides an example of this chat with the user's text in blue.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_at_console.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

XBee connection examples Connect to the ELIZA server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 27

XBee connection examples Connect to the Daytime server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 28

Connect to the Daytime server
The Daytime server reports the current Coordinated Universal Time (UTC) value responding to any
user input.

Note For help with debugging, see Debugging.

The following table explains the AT commands that you use in this example.

At command Value Description

IP (IP Protocol) 1 Set the expected transmission
mode to TCP communications.

DL (Destination
Address)

52.43.121.77 The target IP of the Daytime
server.

DE (Destination
Port)

232A (0x232A) The target port number of the
Daytime server.

TD (Text
Delimiter)

0 The text delimiter to be used for
Transparent mode, as an ASCII
hex code. No information is sent
until this character is entered,
unless the maximum number of
characters has been reached.
Set to zero to disable text
delimiter checking.

To communicate with the Daytime server:

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. To switch to TCP communication, in the IP field, select 1 and click the Write button .
6. To enter the destination address of the daytime server, in the DL field, type 52.43.121.77 and

click the Write button.
7. To enter the destination IP port number, in the DE field, type 232A and click the Write button.
8. To disable text delimiter checking, in the TD field, type 0 and click the Write button.

9. Click the Consoles working mode button on the toolbar to open a serial console to the
device. For instructions on using the Console, see the AT console topic in the XCTU User Guide.

10. Click the Open button to open a serial connection to the device.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_at_console.htm

XBee connection examples Connect to the Daytime server

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 29

11. Click in the left pane of the Console log, then type in the Console to query the Daytime server.
The following screenshot provides an example of this chat.

XBee connection examples Send an SMS message to a phone

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 30

Send an SMS message to a phone
The XBee Cellular Modem can send and receive Short Message Service (SMS) transmissions (text
messages) while in Transparent mode. This allows you to send and receive text messages to and from
an SMS capable device such as a mobile phone.

Note For help with debugging, see Debugging.

The following table explains the AT commands that you use in this example.

Command Value Description

AP (API Enable) 0 Set the device's API mode to Transparent mode.

IP (IP Protocol) 2 Set the expected transmission mode to SMS communication.

P#
(Destination Phone
Number)

<Target
phone
number>

The target phone number that you send to, for example, your
cellular phone. See P# (Destination Phone Number) for
instructions on using this command.

TD (Text Delimiter) D (0x0D) The text delimiter to be used for Transparent mode, as an ASCII
hex code. No information is sent until this character is entered,
unless the maximum number of characters has been reached.
Set to 0 to disable text delimiter checking. Set to D for a
carriage return.

PH (Module's SIM
phone number)

Read only The value that represents your device's phone number as
supplied by the SIM card. This is used to send text messages to
the device from another cellular device.

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. To switch to SMS communication, in the IP field, select 2 and click the Write button .
6. To enter your cell phone number, in the P# field, type the <target phone number> and click

the Write button. Type the phone number using only numbers, with no dashes. You can use the
+ prefix if necessary. The target phone number is the phone number you wish to send a text to.

7. In the TD field, type D and click the Write button.
8. Note the number in the PH field; it is the XBee Cellular Modem phone number, which you see

when it sends an SMS to your phone.

9. Click the Consoles working mode button on the toolbar to open a serial console to the
device. For instructions on using the Console, see the AT console topic in the XCTU User Guide.

10. Click the Open button to open a serial connection to the device.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_at_console.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

XBee connection examples Send an SMS message to a phone

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 31

11. Click in the left pane of the Console log, type hello world and press Enter. The XBee Cellular
Modem sends the message to the destination phone number set by the P# command.

Note If you are receiving individual characters, verify that you set TD correctly.

12. When the phone receives the text, you can see that the sender's phone number matches the
value reported by the XBee Cellular Modem with the PH command.

13. On the phone, reply with the text connect with confidence and the XBee Cellular Modem
outputs this reply from the UART.

XBee connection examples Perform a (GET) HTTP request

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 32

Perform a (GET) HTTP request
You can use the XBee to perform a GET Hypertext Transfer Protocol (HTTP) request using XCTU. HTTP
is an application-layer protocol that runs over TCP. This example uses httpbin.org/ as the target
website that responds to the HTTP request.

Note For help with debugging, see Debugging.

To perform a GET request:

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.
5. To enter the destination address of the target website, in the DL field, type httpbin.org and

click the Write button .
6. To enter the HTTP request port number, in the DE field, type 50 and click the Write button.

Hexadecimal 50 is 80 in decimal.
7. To switch to TCP communication, in the IP field, select 1 and click the Write button.
8. To move into Transparent mode, in the AP field, select 0 and click the Write button.
9. Wait for the AI (Association Indication) value to change to 0 (Connected to the Internet).

10. Click the Consoles working mode button on the toolbar.

11. From the AT console, click the Add new packet button in the Send packets dialog. The
Add new packet dialog appears.

12. Enter the name of the data packet.
13. Type the following data in the ASCII input tab:

GET /ip HTTP/1.1
Host: httpbin.org

14. Click the HEX input tab and add 0A (zero A) after each 0D (zero D), and add an additional 0D 0A
at the end of the message body. For example, copy and past the following text into the HEX
input tab:

47 45 54 20 2F 69 70 20 48 54 54 50 2F 31 2E 31 0D 0A 48 6F 73 74 3A 20 68 74 74 70 62 69 6E
2E 6F 72 67 0D 0A 0D 0A

Note The HTTP protocol requires an empty line (a line with nothing preceding the CRLF) to terminate
the request.

15. Click Add packet.

16. Click the Open button .

http://httpbin.org/

XBee connection examples Perform a (GET) HTTP request

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 33

17. Click Send selected packet.
18. A GET HTTP response from httpbin.org appears in the Console log.

XBee connection examples Connect to a TCP/IP address

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 34

Connect to a TCP/IP address
The XBee Cellular Modem can send and receive TCP messages while in Transparent mode; see
Transparent operating mode.

Note You can use this example as a template for sending and receiving data to or from any
TCP/IP server.

Note For help with debugging, see Debugging.

The following table explains the AT commands that you use in this example.

Command Value Description

IP (IP
Protocol)

1 Set the expected transmission mode to TCP communication.

DL
(Destination
IP Address)

<Target
IP address>

The target IP address that you send and receive from. For
example, a data logging server’s IP address that you want to send
measurements to.

DE
(Destination
Port)

<Target
port number>

The target port number that the device sends the transmission to.
This is represented as a hexadecimal value.

To connect to a TCP/IP address:

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and Add a device to XCTU.

3. Click the Configuration working mode button.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. In the IP field, select 1 and click the Write button .
6. In the DL field, type the <target IP address> and click the Write button. The target IP address

is the IP address that you send and receive from.
7. In the DE field, type the <target port number>, converted to hexadecimal, and click the Write

button.
8. Exit Command mode.

After exiting Command mode, any UART data sent to the device is sent to the destination IP address
and port number after the RO (Packetization Timeout) occurs.

Software libraries
One way to communicate with the XBee device is by using a software library. The libraries available
for use with the XBee Cellular Modem include:

XBee connection examples Debugging

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 35

n XBee Java library
n XBee Python library
n XBee ANSI C library

The XBee Java Library is a Java API. The package includes the XBee library, its source code and a
collection of samples that help you develop Java applications to communicate with your XBee devices.
The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications, making it
an easy process.
The XBee ANSI C Library project is a collection of portable ANSI C code for communicating with the
devices in API mode.

Debugging
If you experience problems with the settings in the examples, you can load the default settings in
XCTU.

Note If you load the default settings, you will need to reapply any configuration settings that you have
previously made.

1. On the Configuration toolbar, click the Default button to load the default values
established by the firmware, and click Yes to confirm.

2. Factory settings are loaded but not written to the device. To write them, click the Write button

on the toolbar.

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
https://github.com/digidotcom/python-xbee
https://github.com/digidotcom/xbee_ansic_library

Get started with MicroPython

This section provides an overview and simple examples of how to use MicroPython with the XBee
Cellular Modem. You can use MicroPython to enhance the intelligence of the XBee to enable you to do
edge-computing by adding business logic in MicroPython, rather than using external components.

Note For in-depth information and more complex code examples, refer to the Digi MicroPython
Programming Guide.

About MicroPython 37
MicroPython on the XBee Cellular Modem 37
Use XCTU to enter the MicroPython environment 37
Use the MicroPython Terminal in XCTU 38
Example: hello world 38
Example: turn on an LED 38
Example: code a request help button 39
Example: debug the secondary UART 44
Exit MicroPython mode 44
Other terminal programs 45
Use picocom in Linux 46

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 36

http://www.digi.com/resources/documentation/Digidocs/90002219/
http://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 37

About MicroPython
MicroPython is an open-source programming language based on Python 3, with much of the same
syntax and functionality, but modified to fit on small devices with limited hardware resources, such as
microcontrollers, or in this case, a cellular modem.

Why use MicroPython
MicroPython enables on-board intelligence for simple sensor or actuator applications using digital and
analog I/O. MicroPython can help manage battery life. Cryptic readings can be transformed into useful
data, excess transmissions can be intelligently filtered out, modern sensors and actuators can be
employed directly, and logic can glue inputs and outputs together in an intelligent way.
For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee Cellular Modem
The XBee Cellular Modem has MicroPython running on the device itself. You can access a MicroPython
prompt from the XBee Cellular Modem when you install it in an appropriate development board (XBDB
or XBIB), and connect it to a computer via a USB cable.

Note MicroPython does not work with SPI.

The examples in this guide assume:

n You have XCTU on your computer. See Install and upgrade XCTU.
n You have a terminal program installed on your computer. We recommend using the Use the

MicroPython Terminal in XCTU. This requires XCTU 6.3.7 or higher.
n You have an XBee Cellular Modem installed in an appropriate development board, such as an

XBIB-U-DEV.

Note Most examples in this guide require the XBIB-U-DEV board.

n The XBee Cellular Modem is connected to the computer via a USB cable and XCTU recognizes
it.

n The board is powered by an appropriate power supply, 12 VDC and at least 1.1 A.

Use XCTU to enter the MicroPython environment
To use the XBee Cellular Modem in the MicroPython environment:

1. Use XCTU to add the device(s); see Install and upgrade XCTU and Add a device to XCTU.
2. The XBee Cellular Modem appears as a box in the Radio Modules information panel. Each

module displays identifying information about itself.
3. Click this box to select the device and load its current settings.
4. Set the device's baud rate to 115200 b/s, in the BD field select 115200 [7] or higher and click

the Write button . We recommend using flow control to avoid data loss, especially when
pasting large amounts of code/text.

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities

Get started with MicroPython Use the MicroPython Terminal in XCTU

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 38

5. Put the XBee Cellular Modem into MicroPython mode, in the AP field select MicroPython REPL

[4] and click the Write button .
6. Note what COM port(s) the XBee Cellular Modem is using, because you will need this

information when you use terminal communication. The Radio Modules information panel lists
the COM port in use.

Use the MicroPython Terminal in XCTU
You can use the MicroPython Terminal to communicate with the XBee Cellular Modem when it is in
MicroPython mode.1 This requires XCTU 6.3.7 or higher. To enter MicroPython mode, follow the steps
in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1. Click the Tools drop-down menu and select MicroPython Terminal. The terminal opens.
2. Click Open. If you have not already added devices to XCTU:

a. In the Select the Serial/USB port area, click the COM port that the device uses.
b. Verify that the baud rate and other settings are correct.

3. Click OK. The Open icon changes to Close , indicating that the device is properly connected.
4. Press Ctrl+B to get the MicroPython version banner and prompt.

You can now type or paste MicroPython commands at the >>> prompt.

Troubleshooting
If you receive No such port: 'Port is already in use by other applications.' in the MicroPython
Terminal close any other console sessions open inside XCTU and close any other serial terminal
programs connected to the device, then retry the MicroPython connection in XCTU.
If the device seems unresponsive, try pressing Ctrl+C to end any running programs.
You can use the +++ escape sequence and look for an OK for confirmation that you have the correct
baud rate.

Example: hello world
Before you begin, you must have previously added a device in XCTU. See Add a device to XCTU.

1. At the MicroPython >>> prompt, type the Python command: print("Hello, World!")
2. Press Enter to execute the command. The terminal echos back Hello, World!.

Example: turn on an LED
1. Note the DS4 LED on the XBIB board. The following image highlights it in a red box. The LED is

normally off.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

Get started with MicroPython Example: code a request help button

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 39

2. At the MicroPython >>> prompt, type the commands below, pressing Enter after each one.
After entering the last line of code, the LED illuminates. Anything after a # symbol is a
comment, and you do not need to type it.

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

import machine
from machine import Pin
led = Pin("D4", Pin.OUT, value=0) # Makes a pin object set to output 0.
One might expect 0 to mean OFF and 1 to mean ON, and this is normally the
case.
But the LED we are turning on and off is setup as what is# known as
"active low".
This means setting the pin to 0 allows current to flow through the LED and
then through the pin, to ground.

3. To turn it off, type the following and press Enter:

led.value(1)

You have successfully controlled an LED on the board using basic I/O.

Example: code a request help button
This example provides a fast, deep dive into MicroPython designed to let you see some of the powerful
things it can do with minimal code. It is not meant as a tutorial; for in-depth examples refer to the Digi

http://www.digi.com/resources/documentation/Digidocs/90002258/
http://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython Example: code a request help button

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 40

MicroPython Programming Guide.
Many stores have help buttons in their aisles that a customer can press to alert the store staff that
assistance is required in that aisle. You can implement this type of system using the Digi XBee Cellular
Modem, and this example provides the building blocks for such a system. This example, based on SMS
paging, can have many other uses such as alerting someone with a text to their phone if a water
sensor in a building detects water on the floor, or if a temperature sensor reports a value that is too
hot or cold relative to normal operation.

Enter MicroPython paste mode
In the following examples it is helpful to know that MicroPython supports paste mode, where you can
copy a large block of code from this user guide and paste it instead of typing it character by character.
To use paste mode:

1. Copy the code you want to run. For this example, copy the following code that is the code from
the previous LED (Example: turn on an LED) example:

from machine import Pin
led = Pin("D4", Pin.OUT, value=0)

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

2. Paste the copied code. Press CTRL + Shift + V or right-click in the Terminal and select Paste.
3. In the terminal, at the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal

displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.
4. The code appears in the terminal occupying multiple lines, where each line starts with its line

number and three = symbols. For example line 1 starts with 1===.
5. If the code is correct, press Ctrl+D to run the code and you should once again see the DS4 LED

turn on. If you get a Line 1 SyntaxError: invalid syntax error, see Syntax error at line 1.
Additionally, if you want to exit paste mode without running the code, for example, or if the
code did not copy correctly, press Ctrl+C to cancel and return to the normal MicroPython >>>
prompt.

6. Next turn the LED off. Copy the code below:

from machine import Pin
led = Pin("D4", Pin.OUT, value=1)
print("DS4 LED now OFF!")
print("Paste Mode Successful!")

7. Press Ctrl+E to enter paste mode.
8. Press Ctrl + Shift + V or right-click in the Terminal and select Paste to paste the copied code.
9. If the code is correct, press Ctrl+D to run it. The LED should turn off and you should see two

confirmation messages print to the screen.

Catch a button press
For this part of the example, you write code that responds to a button press on the XBIB-U-DEV board
that comes with the XBee Cellular Modem Development Kit. The code monitors the pin connected to
the button on the board labeled SW2.

http://www.digi.com/resources/documentation/Digidocs/90002219/
http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython Example: code a request help button

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 41

For this part of the example, you write code that responds to a button press on the XBIB-U-DEV board
that comes with the XBee Cellular Modem Development Kit. The code monitors the pin connected to
the button on the board labeled SW2.

On the board you see DIO0 written below SW2, to the left of the button. This represents the pin that
the button is connected to.
In MicroPython, you will create a pin object for the pin that is connected to the SW2 button. When you
create the pin object, the DIO0 pin is called D0 for short.
The loop continuously checks the value on that pin and once it goes to 0 (meaning the button has been
pressed) a print() call prints the message Button pressed! to the screen.
At the MicroPython >>> prompt, copy the following code and enter it into MicroPython using paste
mode (Ctrl+E), right-click in the Terminal, select Paste to paste the copied code, and press Ctrl+D to
run the code.

Import the Pin module from machine, for simpler syntax.
from machine import Pin

Create a pin object for the pin that the button "SW2" is connected to.
dio0 = Pin("D0", Pin.IN, Pin.PULL_UP)
Give feedback to inform user a button press is needed.
print("Waiting for SW2 press...")
Create a WHILE loop that checks for a button press.
while (True):

if (dio0.value() == 0): # Once pressed.
print("Button pressed!") # Print message once pressed.
break # Exit the WHILE loop.

When you press SW2, you should see "Button pressed!" printed to the
screen.
You have successfully performed an action in response to a button press!

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython Example: code a request help button

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 42

Note If you have problems pasting the code, see Syntax error at line 1. For SMS failures, see Error
Failed to send SMS.

Send a text (SMS) when the button is pressed
After creating a while loop that checks for a button press, add sending an SMS to your code. Instead of
printing Button pressed! to the screen, this code sends Button pressed to a cell phone as a text
(SMS) message.
To accomplish this, use the sms_send() method, which sends a string to a given phone number. It
takes the arguments in the following order:

1. <phone number>
2. <message-to-be-sent>

Before you run this part of the example, you must create a variable that holds the phone number of
the cell phone or mobile device you want to receive the SMS.

1. To do this, at the MicroPython >>> prompt, type the following command, replacing 1123456789
with the full phone number (no dashes, spaces, or other symbols) and press Enter:

ph = 1123456789

2. After you create this ph variable with your phone number, copy the code below and enter it
into MicroPython using paste mode (Ctrl+E) and then run it.

from machine import Pin
import network # Import network module
import time

c = network.Cellular() # initialize cellular network parameter
dio0 = Pin("D0", Pin.IN, Pin.PULL_UP)
while not c.isconnected(): # While no network connection.

print("Waiting for connection to cell network...")
time.sleep(5)

print("Connected.")
Give feedback to inform user a button press is needed.
print("Waiting for SW2 press...")
while (True):

if (dio0.value() == 0):
When SW2 is pressed, the module will send an SMS

message saying "Button pressed" to the given target cell phone
number.

try:
c.sms_send(ph, 'Button Pressed')
print("Sent SMS successfully.")

except OSError:
print("ERROR- failed to send SMS.")

Exit the WHILE loop.
break

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython Example: code a request help button

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 43

Note If you have problems pasting the code, see Syntax error at line 1. For SMS failures, see Error
Failed to send SMS.

Add the time the button was pressed
After you add the ability to send an SMS to the code, add functionality to insert the time at which the
button was pressed into the SMS that is sent. To accomplish this:

1. Create a UDP socket with the socket() method.
2. Save the IP address and port of the time server in the addr variable.
3. Connect to the time server with the connect() method.
4. Send hello to the server to prompt it to respond with the current date and time.
5. Receive and store the date/time response in the buf variable.
6. Send an SMS in the same manner as before using the sms_send() method, except that you add

the time into the SMS message, such that the message reads: [Button pressed at: YYYY-MM-
DD HH:MM:SS]

To verify that your phone number is still in the memory, at the MicroPython >>> prompt, type ph and
press Enter.
If MicroPython responds with your number, copy the following code and enter it into MicroPython
using paste mode and then run it. If it returns an error, enter your number again as shown in Send a
text (SMS) when the button is pressed. With your phone number in memory in the ph variable, copy
the code below and enter it into MicroPython using paste mode (Ctrl+E) and then run it.

from machine import Pin
import network
import usocket
import time

c = network.Cellular()
dio0 = Pin("D0", Pin.IN, Pin.PULL_UP)
while not c.isconnected(): # While no network connection.

print("Waiting for connection to cell network...")
time.sleep(5)

print("Connected.")
Give feedback to inform user a button press is needed.
print("Waiting for SW2 press...")
while (1):

if (dio0.value() == 0):
When button pressed, now the module will send "Button Press" AND
the time at which it was pressed in an SMS message to the given
target cell phone number.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_DGRAM)
Connect the socket object to the web server specified in

"address".
addr = ("52.43.121.77", 10002)
socketObject.connect(addr)
bytessent = socketObject.send("hello")
print("Sent %d bytes on socket" % bytessent)
buf = socketObject.recv(1024)
Send message to the given number. Handle error if it occurs.
try:

c.sms_send(ph, 'Button Pressed at: ' + str(buf))

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode

Get started with MicroPython Example: debug the secondary UART

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 44

print("Sent SMS successfully.")
except OSError:

print("ERROR- failed to send SMS.")
Exit the WHILE loop.
break

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

Now you have a system based on the XBee Cellular Modem that sends an SMS in response to a certain
input, in this case a simple button press.

Note If you have problems pasting the code, see Syntax error at line 1. For SMS failures, see Error
Failed to send SMS.

Example: debug the secondary UART
This sample code is handy for debugging the secondary UART. It simply relays data between the
primary and secondary UARTs.

from machine import UART
import sys, time

def uart_init():
u = UART(1)
u.write('Testing from XBee\n')
return u

def uart_relay(u):
while True:

uart_data = u.read(-1)
if uart_data:

sys.stdout.buffer.write(uart_data)
stdin_data = sys.stdin.buffer.read(-1)
if stdin_data:

u.write(stdin_data)

time.sleep_ms(5)

u = uart_init()
uart_relay(u)

You only need to call uart_init() once.
Call uart_relay() to pass data between the UARTs.
Send Ctrl-C to exit relay mode.
When done, call u.close() to close the secondary UART.

Exit MicroPython mode
To exit MicroPython mode:

http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython Other terminal programs

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 45

1. In the XCTU MicroPython Terminal, click the green Close button .
2. Click Close at the bottom of the terminal to exit the terminal.

3. In XCTU's Configuration working mode , change AP API Enable to another mode and click

the Write button . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs
If you do not use the MicroPython Terminal in XCTU, you can use other terminal programs to
communicate with the XBee Cellular Modem. If you use Microsoft Windows, follow the instructions for
Tera Term, if you use Linux, follow the instructions for picocom. To download these programs:

n Tera Term for Windows; see https://ttssh2.osdn.jp/index.html.en.
n Picocom for Linux; see https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_

Ubuntu and for the source code and in-depth information https://github.com/npat-
efault/picocom.

Tera Term for Windows
With the XBee Cellular Modem in MicroPython mode (AP = 4), you can access the MicroPython prompt
using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.
2. Click the Serial radio button to select a serial connection.
3. From the Port: drop-down menu, select the COM port that the XBee Cellular Modem is

connected to.
4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to

connect to the device at a baud rate of 9600 b/s. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 b/s.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

6. In the Tera Term: Serial port setup window, set the parameters to the following values:
n Port: Shows the port that the XBee Cellular Modem is connected on.
n Baud rate: 115200

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 46

n Data: 8 bit
n Parity: none
n Stop: 1 bit
n Flow control: hardware
n Transmit delay: N/A

7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.

8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. In Tera Term, click Setup and select Terminal.
b. In the New-line area of the Tera Term: Serial port setup window, click the Receive drop-

down menu and select CR if it does not already show that value.
c. Make sure the Local echo box is not checked.

9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux
With the XBee Cellular Modem in MicroPython mode (AP = 4), you can access the MicroPython prompt
using a terminal.

Note The user must have read and write permission for the serial port the XBee Cellular Modem is
connected to in order to communicate with the device.

1. Open a terminal in Linux and type picocom -b 115200 /dev/ttyUSB0. This assumes you have
no other USB-to-serial devices attached to the system.

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter to
bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee Cellular Modem, check the directory /dev/ for any devices named
ttyUSBx, where x is a number. An easy way to list these is to type: ls /dev/ttyUSB*. This
produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee Cellular Modem.
3. Check the directory again and you should see one additional device, which is the XBee Cellular

Modem.
4. In this case, replace /dev/ttyUSB0 at the top with /dev/ttyUSB<number>, where <number>

is the new number that appeared.
5. It should connect and show Terminal ready.

Get started with MicroPython Use picocom in Linux

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 47

Now you can type MicroPython commands at the >>> prompt.

Get started with Digi Remote Manager

Digi Remote Manager® is a cloud-based device and data management platform that you can use to
configure and update a device, and view and manage device data.
The sections below describe how to create a Remote Manager account, upgrading your device,
configure your device, and manage data in Remote Manager.

1. Create a Remote Manager account and add devices
2. To ensure that all Remote Manager features are available, you should upgrade your device to

the latest firmware. See Update the firmware from the Devices page in Remote Manager or
Update the firmware using web services in Remote Manager.

3. Configure your device in Remote Manager
To be able to configure your device in Remote Manager, the device must be connected to
Remote Manager. You can connect to and configure your device in Remote Manager using one
of the following methods:

o Scheduled connection: In this method, you create a list of tasks that you want to
perform on the device, and then start the operation. This is the recommended method,
and is the best choice for low data usage. See Configure Remote Manager features by
scheduling tasks.

o Always connected: This method can be used for initial configuration, or when you are
not concerned with low data usage. See Configure XBee settings within Remote
Manager.

4. Secure the connection between an XBee and Remote Manager with server authentication.
5. Manage data in Remote Manager

6. Remote Manager reference

Create a Remote Manager account and add devices
To be able to use Remote Manager, you must create a Remote Manager account and add your XBee
devices to the device list. You should also verify that the device is enabled to connect to Remote
Manager.

1. Create a Remote Manager account.
2. Add an XBee Cellular Modem to Remote Manager.
3. Verify the connection between a device and Remote Manager

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 48

Get started with Digi Remote Manager Create a Remote Manager account and add devices

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 49

Create a Remote Manager account
Digi Remote Manager is an on-demand service with no infrastructure requirements. Remote devices
and enterprise business applications connect to Remote Manager through standards-based web
services. This section describes how to configure and manage an XBee using Remote Manager. For
detailed information on using Remote Manager, refer to the Remote Manager User Guide, available via
the Documentation tab in Remote Manager.
Before you can manage an XBee with Remote Manager, you must create a Remote Manager account.
To create a Remote Manager account:

1. Go to https://www.digi.com/products/cloud/digi-remote-manager.
2. Click 30 DAY FREE TRIAL/LOGIN.
3. Follow the online instructions to complete account registration. You can upgrade your

Developer account to a paid account at any time.

When you are ready to deploy multiple XBee Cellular Modems in the field, upgrade your account to
access additional Remote Manager features.

Add an XBee Cellular Modem to Remote Manager
Each XBee Cellular Modem must be added to the Remote Manager account inventory list.
Before adding an XBee to your Remote Manager account inventory, you need to determine the
International Mobile Equipment Identity (IMEI) number for the device. Use XCTU to view the IMEI
number by querying the IM parameter.
To add an XBee to your Remote Manager account inventory, follow these steps:

1. Log into Remote Manager.
2. Click Device Management > Devices.
3. Click Add Devices. The Add Devices dialog appears.

4. Select IMEI #, and type or paste the IMEI number of the XBee you want to add. The IM
(IMEI) command provides this number.

5. Click Add to add the device. The XBee is added to your inventory.
6. Click OK to close the Add Devices dialog and return to the Devices view.

https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm
https://www.digi.com/products/cloud/digi-remote-manager
https://remotemanager.digi.com/

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 50

Verify the connection between a device and Remote Manager
By default, the XBee is configured to enable communication with Remote Manager. The
communication between XBee and Remote Manager is achieved using periodic UDP operations.
You should verify the default settings to ensure that communcation will work as desired.

1. Launch XCTU .

2. Verify that the MO command is set to 6, which is the default.
3. Configure the frequency of polls for Remote Manager activity using the DF command. The

default is 1440 minutes (24 hours).
4. Enable the SM/UDP feature in Remote Manager for each device. See Enable SM/UDP.
5. To ensure that the device is connected to Remote Manager, you must send an SM/UDP

request.
a. Log into Remote Manager.
b. Click Devices in the left pane.
c. Select the device that you want to work with.
d. From the right pane, click Actions and then SM/UDP Request Connect.
e. If you would like a response, enable Request Response.
f. Click Request Connect. When the connection is made, the Connection Status icon next to

the device on the Devices page turns green.

Configure Remote Manager features by scheduling tasks
Remote Manager provides tools to perform common management and maintenance tasks on your
XBee device. A Remote Manager task is a sequence of commands that can be performed on one or
more XBee Cellular devices. Tasks can then be assigned to a schedule. When a scheduled task is run it
becomes an active operation and can be monitored for status and completion.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

Some typical examples of useful things that can be done with scheduled tasks include:

n Change configuration
n Update your MicroPython application and libraries to add features and capabilities
n Update your security certificates
n Perform a data service device request
n Send an SMS message to your device

Scheduled tasks can be created and performed through the following methods:

n Remote Manager Schedules user interface.
n Remote Manager API Explorer user interface
n Programming web service calls

https://remotemanager.digi.com/

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 51

Note For any of these methods to work properly, you must have SM/UDP enabled. See Enable
SM/UDP.

Overview: Create a schedule for a set of tasks
When using the most current firmware version, the XBee Cellular devices are designed to poll Remote
Manager once per day over the SM/UDP protocol to check for any active operations. In order to
perform a set of tasks, the device needs to be told to connect to Remote Manager, perform the
sequence of tasks, and then told to disconnect.
The following provides a template of how to create a schedule for an XBee to connect, perform a set
of tasks and then disconnect:

1. Make sure that SM/UDP is enabled. See Enable SM/UDP.
2. Log into Remote Manager.
3. Click Device Management > Schedules.
4. Click New Schedule. The New Schedule page displays.

Note The Steps to schedule a task wizard may display. Click the x in the upper left corner to
close the wizard. See Schedule walk-through feature in the Digi Remote Manager® User Guide for
more information.

5. In the Description field, enter a name for the schedule, such "Read Settings."
6. Add the following tasks:

a. Click SM/UDP > SM/UDP Request Connect. A task is added to the dialog.
b. Add other tasks as needed. For examples, refer to the Examples section.
c. Click Device > Disconnect. A task is added to the dialog.

7. Click Schedule in the lower right corner of the dialog to schedule the tasks to run. The
schedule screen displays.

Note You can also click Save as to save this schedule for future use.

8. Select the device(s) on which you want to run this schedule. You can add more than one device.
9. Click Run Now.

Examples
The examples in the following sections assume you are using the Digi Remote Manager Schedule
wizard. However, you should be aware that operations can be created and performed
programmatically via web service calls or via the API explorer. The XML web service calls provide more
options than are available in the GUI dashboard for some tasks.

Example: Read settings and state using Remote Manager
In order to configure devices you will need to know the structure of the XML for your XBee's settings.
The easiest way to obtain this is to perform a query_setting RCI request against your device.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#reference/r_schedule_dialog.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 52

Note To obtain the state of the device, you can perform the same operations in the example below,
but replace query_setting with query_state.

1. Log into Remote Manager.
2. Click Device Management > Schedules.
3. Click New Schedule. The New Schedule page displays.

Note The Steps to schedule a task wizard may display. Click the x in the upper left corner to
close the wizard. See Schedule walk-through feature in the Digi Remote Manager® User Guide for
more information.

4. In the Description field, enter a name for the schedule, such "Read Settings."
5. Add the following tasks:

a. Click SM/UDP > SM/UDP Request Connect. A task is added to the dialog.
b. Click Device > RCI Command. A task is added to the dialog.

Change the RCI command to the following:

<rci_request>
<query_setting/>

</rci_request>

c. Make sure that the Allow Offline option is selected. This ensures that the schedule runs
even if the device is offline.

d. Click Device > Disconnect. A task is added to the dialog.
6. Click Schedule in the lower right corner of the dialog to schedule the tasks to run. The

schedule screen displays.

Note You can also click Save as to save this schedule for future use.

7. Select the device(s) on which you want to run this schedule. You can add more than one device.
8. Click Run Now.
9. Click Device Management > Operations to view information about the operation. See

Operations in the Digi Remote Manager® User Guide for more information about this page.

After your operation completes you can click Response to view the XML for all of the settings that
your XBee reports. This XML structure has the same settings that you will use in the set_setting
command to configure your XBee as shown in this example: Example: Configure a device from Remote
Manager using XML.

Example: Configure a device from Remote Manager using XML
You can configure each XBee device from Remote Manager, using XML. The devices must be in the
Remote Manager inventory device list and be active.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

In this configuration example, you are changing the device to poll four times a day instead of just once.
In this case, you should change the DF parameter to 360 minutes.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#reference/r_schedule_dialog.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_operations.htm%3FTocPath%3DOperations|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 53

1. Log into Remote Manager.
2. Click Device Management > Schedules.
3. Click New Schedule. The New Schedule page displays.

Note The Steps to schedule a task wizard may display. Click the x in the upper left corner to
close the wizard. See Schedule walk-through feature in the Digi Remote Manager® User Guide for
more information.

4. In the Description field, enter a name for the schedule, such as "Configure Reporting
Frequency."

5. Add the following tasks:
a. Click SM/UDP > SM/UPD Request Connect. A task is added to the dialog.
b. Click Device > RCI Command. A task is added to the dialog.

Change the RCI command to the following:

<rci_request>
<set_setting>
<remote_manager>
<DF>360</DF>

</remote_manager>
</set_setting>

</rci_request>

c. Click Device > Disconnect. A task is added to the dialog.
6. Click Schedule in the lower right corner of the dialog to schedule the tasks to run. The

schedule screen displays.

Note You can also click Save as to save this schedule for future use.

7. Select the device(s) on which you want to run this schedule. You can add more than one device.
8. Click Run Now.
9. Click Device Management > Operations to view information about the operation. See

Operations in the Digi Remote Manager® User Guide for more information about this page.

Example: Schedule a task to update the device firmware using
Remote Manager
You can use a scheduled task to update the XBee Cellular firmware. Since the device is configured by
default to poll Remote Manager once a day, you need to be able to set up a scheduled task to update
the device's firmware to take advantage of new features and fixes. To update the firmware to a new
version you will need to obtain the .ebin file for the new firmware from our support site. This file is one
of the files in the .zip (for example, XBXC-31011.zip) archive that you can download for the product.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

To upgrade using a scheduled task perform the following steps:

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#reference/r_schedule_dialog.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_operations.htm%3FTocPath%3DOperations|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 54

1. Download the updated firmware file for your device from Digi's support site.
a. Go to the Digi XBee Cellular LTE CAT 1 support page.
b. Scroll down to the Firmware Updates section.
c. Locate and click XBee Cellular LTE Cat 1 Verizon Firmware to download the zip file.
d. Unzip the file.

2. Log into Remote Manager.
3. Make sure that you have enabled SM/UDP. See Enable SM/UDP.

4. Click Device Management > Schedules.
5. Click New Schedule. The New Schedule page displays.

Note The Steps to schedule a task wizard may display. Click the x in the upper left corner to
close the wizard. See Schedule walk-through feature in the Digi Remote Manager® User Guide for
more information.

6. In the Description field, enter a name for the schedule, such as "Update XBee Firmware."
7. Add the following tasks:

a. Click SM/UDP > SM/UDP Request Connect. A task is added to the dialog.
b. Click Device > Gateway Firmware Update.
c. Click Browse and select the .ebin file (for example, XBXC-1011.ebin) for the new firmware

to update.
d. Click Device > Disconnect. A task is added to the dialog.

8. Click Schedule in the lower right corner of the dialog to schedule the tasks to run. The
schedule screen displays.

Note You can also click Save as to save this schedule for future use.

9. Select the device(s) on which you want to run this schedule. You can add more than one device.
10. Click Run Now.
11. Click Device Management > Operations to view information about the operation. See

Operations in the Digi Remote Manager® User Guide for more information about this page.

Example: Update MicroPython from Remote Manager using XML
You can use the API Explorer in Remote Manager to create a schedule that enables you to update the
MicroPython application. In this example, you want to add FTP client capability to the MicroPython
application. You will need to add the library uftp.py and then update the main.py application.
This example is done following these steps: upload the MicroPython files to Remote Manager, create
an XML file with the tasks that you want to perform, upload the XML file, and then schedule an
operation to upload the files onto your device.

Note You must upgrade your device to the latest firmware for all features to be available. See Update
the firmware.

https://www.digi.com/support/productdetail?pid=5623&type=firmware
https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#reference/r_schedule_dialog.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_operations.htm%3FTocPath%3DOperations|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 55

Step 1: Upload the MicroPython files

1. Log into Remote Manager.
2. Click the arrow next to you your user name, and click Open Classic Remote Manager.
3. Click Data Services > Data Files.
4. Upload the MicroPython application main.py file.

a. Click New Folder. The New Folder dialog displays.
b. In the Folder name field, enter a descriptive name, such as "MicroPython."
c. Click Create. The new file is added to the list of files.
d. Find the "MicroPython" folder in the folder list.
e. Click Upload Files. The Upload Files dialog displays.
f. Browse for the main.py file. Check with your system administrator for the location of the

application file.
g. Click OK.

5. Upload the MicroPython library uftp.py file.
a. Find the "MicroPython" folder in the folder list.
b. Click Upload Files. The Upload Files dialog displays.
c. Browse for the uftp.py file. The library uftp.py file is found on the GitHub repository:

https://github.com/digidotcom/xbee-micropython
d. Click OK.

Step 2: Create an XML file with the tasks that you want to perform
This XML file will contain a list of commands for the operation that you will schedule in Step 3.

Note The RCI commands to set_settings in the task may fail to execute because of disconnects after
changing the value for MO.

1. Open the editor of your choice.
2. Create a new file named updatemicropython.xml.
3. Copy the XML below and paste it into the new file.
4. Save the file.

<task>
<description>Update MicroPython</description>
<command>
<name>SM/UDP Request Connect</name>
<event>
<on_error>
<end_task/>

</on_error>
</event>
<sci>
<send_message reply="none" >
<sm_udp>
<request_connect/>

</sm_udp>
</send_message>

</sci>
</command>

https://remotemanager.digi.com/
https://github.com/digidotcom/xbee-micropython

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 56

<command>
<name>RCI Command</name>
<event>
<on_error>
<continue/>

</on_error>
</event>
<sci>
<send_message cache="false" allowOffline="true" >
<!-- Disable Python Auto-start and enable TCP connection for remainder of commands-->
<rci_request>
<set_setting>
<micropython>
<PS>0</PS>
</micropython>
<remote_manager>
<MO>7</MO>
</remote_manager>

</set_setting>
</rci_request>

</send_message>
</sci>

</command>
<command>

<!-- Reboot to stop MicroPython -->
<name>Reboot</name>
<event>
<on_error>
<continue/>

</on_error>
</event>
<sci>
<reboot allowOffline="true" waitForReconnect="true"/>

</sci>
</command>
<!-- Update MicroPython application-->

<command>
<name>Upload Files</name>
<event>
<on_error>
<continue/>

</on_error>
</event>
<sci>
<file_system allowOffline="true" >
<commands>
<put_file path="/flash/main.py">
<file>~/MicroPython/main.py</file>

</put_file>
</commands>

</file_system>
</sci>

</command>
<command>
<name>Upload Files</name>
<event>
<on_error>
<continue/>

</on_error>
</event>

Get started with Digi Remote Manager Configure Remote Manager features by scheduling tasks

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 57

<sci>
<file_system allowOffline="true" >
<commands>
<put_file path="/flash/lib/uftp.py">
<file>~/MicroPython/uftp.py</file>

</put_file>
</commands>

</file_system>
</sci>

</command>
<command>
<name>RCI Command</name>
<event>
<on_error>
<continue/>

</on_error>
</event>
<sci>
<send_message cache="false" allowOffline="true">

<!-- Enable Python Auto-start -->
<rci_request>
<set_setting>
<micropython>
<PS>1</PS>

</micropython>
<remote_manager>
<MO>6</MO>

</remote_manager>
</set_setting>

</rci_request>
</send_message>

</sci>
</command>

<!-- Reboot to start the program -->
<command>
<name>Reboot</name>
<event>
<on_error>
<end_task/>

</on_error>
</event>
<sci>
<reboot allowOffline="true" waitForReconnect="false"/>

</sci>
</command>

</task>

Step 3: Upload the XML to Remote Manager
In this step you will upload the file you just created (updatemicropython.xml) to Remote Manager.

1. Log into Remote Manager.
2. Click Data Services > Data Files.

https://remotemanager.digi.com/

Get started with Digi Remote Manager Manage data in Remote Manager

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 58

3. Upload the XML file you just created: updatemicropython.xml
a. Find the "~/my_tasks" folder in the folder list.
b. Click Upload Files. The Upload Files dialog displays.
c. Browse for the updatemicropython.xml file.
d. Click OK.

Step 4: Schedule an operation to upload the files

1. Log into Remote Manager.
2. Click Documentation > API Explorer.
3. Click SCI Targets. The Select devices to be used in examples dialog appears.

a. From the Add Targets list box, search for the IMEI (device ID) of the device that you want
to update.

b. Click Add. The device is added to the device list.
c. Click OK.

4. Click the Examples drop-down list button.
5. Click Scheduled Operation > Create immediate running schedule.
6. Update the XML to refer to the updatemicropython.xml file you created previously.

Note For additional examples of how you can deploy this code to multiple devices, such as a
group of devices or devices with a specific tag, see SCI targets in the Digi Remote Manager
Programmer Guide.

<!-- Runs immediately -->
<Schedule on="IMMEDIATE">
<targets>
<device id="00010000-00000000-03588320-70372440"/>
</targets>

<task path="~/my_tasks/updatemicropython.xml"/>
</Schedule>

7. Click Send to schedule the task.
8. Click Device Management > Operations to view information about the operation. See

Operations in the Digi Remote Manager® User Guide for more information about this page.

Manage data in Remote Manager
You can view and manage XBee data in Remote Manager.
You can also update your device firmware from Remote Manager. See Update the device firmware.

Review device status information from Remote Manager
You can view address, BLE, cellular, firmware, and I/O sampling status information for a XBee device in
Remote Manager. The device must be in the Remote Manager inventory device list and be active.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_sci_targets.htm
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#containers/cont_pg_get_started.htm%3FTocPath%3DGet%2520started|_____0
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#containers/cont_pg_get_started.htm%3FTocPath%3DGet%2520started|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_operations.htm%3FTocPath%3DOperations|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Manage data in Remote Manager

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 59

1. Set up a persistent connection to connect the device to Remote Manager using one of the
following methods:

n Remote Manager: A persistent connection can be set up in Remote Manager. This
option should be used when you have many deployed devices and no local access. See
Restore persistent connection to a remote XBee.

n XCTU: This option allows immediate access, and should be used when you have local
access, such as when using a development kit or in a lab environment.

2. Log into Remote Manager.
3. Click Device Management > Devices.
4. Select the device that you want to configure.
5. Click Properties in the toolbar. As an alternative, click Properties > Edit Device

Configuration. The configuration Home page appears.
6. Click Status in the toolbar to display the status sub-menus.
7. Click on the status group that has information you want to display. The status information is

related to AT commands. For information about each AT command in the categories, click on
the appropriate link below.

n Addressing
n Cellular
n Firmware Version/Information
n I/O

8. Click Home to return to the configuration Home page.
9. When all changes are complete, disconnect the device from Remote Manager.

Manage secure files in Remote Manager
You can interact with files on the XBee device from Remote Manager, using either the SCI (Server
command interface) or in the File Management view.
You can securely upload files by appending a hash sign (#) to the end of the file name. After the upload,
the hash sign (#) is not retained as part of the file name. For example, you could upload a file named
my-cert.crt appended with a hash sign (#): my-cert.crt#. After the upload is complete, the file is named
my-cert.crt.

Note Uploading secure files in Remote Manager has the same result as doing an ATFS XPUT locally.
See Secure files for more information.

SCI (Server command interface)
You can use the SCI (Server command interface) file_system command to securely upload a file.
For more information, see the file_system section in the Digi Remote Manager Programming Guide.

File Management view
You can upload and manage files in the Remote Manager File Management view.

1. Prepare the file that you want to upload.
a. Find the file on your hard drive.
b. Rename the file and append a hash sign (#) to the end of the file name.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_ws_sci.htm%3FTocPath%3DWeb%2520services%2520reference|SCI%2520(Server%2520command%2520interface)|_____0
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_ws_sci.htm%3FTocPath%3DWeb%2520services%2520reference|SCI%2520(Server%2520command%2520interface)|_____0
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_ws_sci.htm%3FTocPath%3DWeb%2520services%2520reference|SCI%2520(Server%2520command%2520interface)|_____0
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_sci_available_operators.htm#file_sys
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm

Get started with Digi Remote Manager Remote Manager reference

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 60

2. Set up a persistent connection to connect the device to Remote Manager using one of the
following methods:

n Remote Manager: A persistent connection can be set up in Remote Manager. This
option should be used when you have many deployed devices and no local access. See
Restore persistent connection to a remote XBee.

n XCTU: This option allows immediate access, and should be used when you have local
access, such as when using a development kit or in a lab environment. See DO (Device
Options) and MO (Remote Manager Options). Both must be enabled.

3. Log into Remote Manager.
4. Click Device Management > Devices.
5. Select the device that you want to configure.
6. Click Properties in the toolbar. As an alternative, double-click on the device name. The

Properties page appears.
7. Click File Management. The File Management view appears.
8. Click the upload icon. The Upload File dialog appears.

a. Click Browse to browse for the file you want to upload. The selected file displays in the File
field. Make sure that the file name is appended by a hash sign (#).

b. Click OK. The uploaded file displays in the File Management view. Note that the file name
is no longer appended by a hash sign (#).

9. When all changes are complete, disconnect the device from Remote Manager.

Remote Manager reference

Enable SM/UDP
You can use the SM/UDP feature to leverage the very small data footprint of Remote Manager SM
protocol over UDP.

Note Battery Operated Mode may be enabled in Digi Remote Manager. Review the Battery Operated
Mode section to determine the impact of enabling this mode on SM/UDP.

1. Log into Remote Manager.
2. Click Device Management > Devices.
3. Select the device that you want to configure.
4. Click More > SM/UDP > Configure. The SM/UDP dialog appears.
5. Select SM/UDP Service Enabled to enable SM/UDP.
6. Click Save.

TCP connection
The TCP connection between an XBee and Remote Manager is dependent on the device's firmware
version. Options are to query Remote Manager once a day or to maintain a persistent TCP connection.
To determine which connection method is being used, refer to the version listed below.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_request_connect_sm_udp_support.htm
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_request_connect_sm_udp_support.htm
https://remotemanager.digi.com/

Get started with Digi Remote Manager Remote Manager reference

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 61

Module Upgrade firmware version

XBee CAT 1 Verizon 1011

n At or above the listed version: If your firmware version is at or above the listed version, your
device queries Remote Manager only once a day. The device connects to Remote Manager,
queries Remote Manager for updates and then receives updates. When the update is complete,
the device disconnects from Remote Manager.
If you upgrade to the new firmware version, it is recommended that you keep the polling
frequency low to reduce data usage. In order to upgrade firmware in the future, refer to
Example: Schedule a task to update the device firmware using Remote Manager.

Note If you wish to restore the persistent connection behavior that was the default in prior
firmware versions, see Restore persistent connection to a remote XBee.

n Below the listed version: If your firmware version is below the listed version, a persistent
TCP connection is used by default. The device is continually connected to Remote Manager
using TCP.

Restore persistent connection to a remote XBee
The default connectivity to Remote Manager in the most recent firmware polls once a day using
SM/UDP, which means that your XBee will always appear in a disconnected state and will use
significantly less data.
If needed, you can restore the default connectivity to use the former behavior, where the device is
continually connected using TCP. To do this, you will need to set bit 0 of the MO setting. The suggested
value for MO is 7 to connect securely over TLS, or you can use 1 for no security, which is the legacy
value.
You can make the change using one of the following methods:

n Local access: If you have local access to the device you can use XCTU to change the MO setting
back to the former default value.

n Remote access: If you only have remote access to your XBee you can change the device to
maintain a persistent connection to Remote Manager. To do this you can set up a scheduled
operation in Remote Manger for your device, as shown below.

To set up a scheduled operation to maintain a persistent connection:

1. Log into Remote Manager.
2. Make sure that you have enabled SM/UDP. See Enable SM/UDP.
3. Click Device Management > Schedules.
4. Click New Schedule. The New Schedule page displays.

Note The Steps to schedule a task wizard may display. Click the x in the upper left corner to
close the wizard. See Schedule walk-through feature in the Digi Remote Manager® User Guide for
more information.

5. In the Description field, enter a name for the schedule, such as "Restore Persistent."

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#reference/r_schedule_dialog.htm
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm

Get started with Digi Remote Manager Remote Manager reference

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 62

6. Add the following tasks:
a. Click SM/UDP > SM/UPD Request Connect. A task is added to the dialog.
b. Click Device > RCI Command. A task is added to the dialog.

Change the RCI command to the following:

<rci_request>
<set_setting>
<remote_manager>
<MO>7</MO>
</remote_manager>

</set_setting>
</rci_request>

7. Click Schedule in the lower right corner of the dialog to schedule the tasks to run. The
schedule screen displays.

Note You can also click Save as to save this schedule for future use. The XML for your task is
saved in the ~\my_tasks directory on Data Services > Data Files in Remote Manager.

8. Select the device(s) on which you want to run this schedule. You can add more than one device.
9. Click Run Now. Within the next 24 hours, which is the default polling period for querying

Remote Manager, your device will connect and will remain connected, as specified by the
change to the MO setting.

10. Click Device Management > Operations to view information about the operation. See
Operations in the Digi Remote Manager® User Guide for more information about this page.

Disconnect
The TCP connection remains open and periodic polling occurs until you manually disconnect the
TCP connection. After you have disconnected the TCP connection, Remote Manager is no longer
updated.
You can disconnect the TCP connection using either of the following methods:

n From the Devices page in Remote Manager: See Disconnect a device in the Digi Remote
Manager® User Guide.

n Using web services in Remote Manager: See Request connect SM/UDP support in the Digi
Remote Manager® Programming Guide.

Configure XBee settings within Remote Manager
You can configure the device settings to use features with Remote Manager. For more information,
see Example: Read settings and state using Remote Manager.

Configure device settings in Remote Manager
You can configure each XBee device from Remote Manager. The devices must be in the Remote
Manager inventory device list and be active.

1. Set up a persistent connection to connect the device to Remote Manager using one of the
following methods:

https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_operations.htm%3FTocPath%3DOperations|_____0
https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/Digidocs/90001436-13/default.htm#tasks/t_disconnect_a_device.htm
https://www.digi.com/resources/documentation/Digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/Digidocs/90001436-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_request_connect_sm_udp_support.htm?Highlight=request_connect
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm

Get started with Digi Remote Manager Remote Manager reference

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 63

n Remote Manager: A persistent connection can be set up in Remote Manager. This
option should be used when you have many deployed devices and no local access. See
Restore persistent connection to a remote XBee.

n XCTU: This option allows immediate access, and should be used when you have local
access, such as when using a development kit or in a lab environment. See DO (Device
Options) and MO (Remote Manager Options). Both must be enabled.

2. Log into Remote Manager.
3. Click Device Management > Devices.
4. Select the device that you want to configure.
5. Click Properties in the toolbar. As an alternative, click Properties > Edit Device

Configuration. The configuration Home page appears.
6. Click Config in the toolbar to display the settings sub-menus.
7. Click on the settings category that you want to configure. The settings in that category appear.
8. Make the desired configuration changes. See AT commands for information about each setting

in the categories.
9. As you finish configuring in each setting category, click Apply to save the changes. If the

changes are valid, Remote Manager writes them to non-volatile memory and applies them.
10. When all changes are complete, disconnect the device from Remote Manager.

Configure Remote Manager keepalive interval
Managing the data usage and the keepalive interval is important if you have the MO (Remote Manager
Options) command bit 0 set to 1 or if you have enabled the Request connect feature in Remote
Manager.
Digi Remote Manager is enabled on the XBee by default and has a 60 second keepalive interval, which
can result in excessive cellular data usage, depending on your plan. The K1 and K2 commands can be
used to tune the keepalive interval. Your carrier will disconnect an inactive socket automatically if
there is no activity, so you need to tune this value based on your carrier’s disconnect timeout.
You can further reduce your data usage by periodically duty cycling your Remote Manager connection,
either from MicroPython or your host processor. For example, you could enable the Remote Manager
connection for 2 hours a day and then disable the connection for 22 hours. Your host processor or
MicroPython program would need to keep track of the time to ensure the time interval.

https://remotemanager.digi.com/
https://www.digi.com/resources/documentation/digidocs/90001437-13/default.htm#reference/r_request_connect_sm_udp_support.htm

Examples: IOT protocols with transparent mode

The following examples provide some additional scenarios you can use to get familiar with the XBee.
If you are interested in using the intelligence built into the XBee, see Get started with MicroPython.

Get started with CoAP 65
Get started with MQTT 69

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 64

Examples: IOT protocols with transparent mode Get started with CoAP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 65

Get started with CoAP
Constrained Application Protocol (CoAP) is based on UDP connection and consumes low power to
deliver similar functionality to HTTP. This guide contains information about sending GET, POST, PUT
and DELETE operations by using the Coap Protocol with XCTU and Python code working with the XBee
Cellular Modem and Coapthon library (Python 2.7 only).
The Internet Engineering Task Force describes CoAP as:

The protocol is designed for machine-to-machine (M2M) applications such as smart energy and
building automation. CoAP provides a request/response interaction model between application
endpoints, supports built-in discovery of services and resources, and includes key concepts of
the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP
for integration with the Web while meeting specialized requirements such as multicast
support, very low overhead, and simplicity for constrained environments (source).

CoAP terms
When describing CoAP, we use the following terms:

Term Meaning

Method COAP's method action is similar to the HTTP method. This guide discusses the GET,
POST, PUT and DELETE methods. With these methods, the XBee Cellular Modem can
transport data and requests.

URI URI is a string of characters that identifies a resource served at the server.

Token A token is an identifier of a message. The client uses the token to verify if the
received message is the correct response to its query.

Payload The message payload is associated with the POST and PUT methods. It specifies the
data to be posted or put to the URI resource.

Message ID The message ID is also an identifier of a message. The client matches the message
ID between the response and query.

CoAP quick start example
The following diagram shows the message format for the CoAP protocol; see ISSN: 2070-1721 for
details:

This is an example GET request:
44 01 C4 09 74 65 73 74 B7 65 78 61 6D 70 6C 65

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252#section-3

Examples: IOT protocols with transparent mode Get started with CoAP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 66

The following table describes the fields in the GET request.

Field HEX Bits Meaning

Ver 44 01 Version 01, which is mandatory here.

T 00 Type 0: confirmable.

TKL 0100 Token length: 4.

Code 01 000 00001 Code: 0.01, which indicates the GET method.

Message ID C4 09 2 Bytes equal
to hex at left

Message ID. The response message will have the
same ID. This can help out identification.

Token 74 65 73 74 4 Bytes equal
to hex at left

Token. The response message will have the same
token. This can help out identification.

Option delta B7 1011 Delta option: 11 indicates the option data is Uri-
Path.

Option length 0111 Delta length: 7 indicates there are 7 bytes of data
following as a part of this delta option.

Option value 65 78 61 6D
70 6C 65

7 Bytes equal
to hex at left

Example.

Configure the device
1. Ensure that the device is set up correctly with the SIM card installed and the antennas

connected as described in Connect the hardware.

2. Open XCTU and click the Configuration working mode button.
3. Add the XBee Cellular Modem to XCTU; see Add a device to XCTU.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. To switch to UDP communication, in the IP field, select 0 and click the Write button .
6. To set the target IP address that the XBee Cellular Modem will talk to, in the DL field type

52.43.121.77and click the Write button . A CoAP server is publicly available at address
52.43.121.77.

7. To set the XBee Cellular Modem to send data to port 5683 in decimal, in the DE field, type 1633
and click the Write button.

8. To move into Transparent mode, in the AP field, select 0 and click the Write button.
9. Wait for the AI (Association Indication) value to change to 0 (Connected to the Internet). You

can click Read to get an update on the AI value.

Example: manually perform a CoAP request
Follow the steps in Configure the device prior to this example. This example performs the CoAP
GET request:

Examples: IOT protocols with transparent mode Get started with CoAP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 67

n Method: GET
n URI: example
n Given message token: test

1. Click the Consoles working mode button on the toolbar to add a customized packet.

2. From the AT console, click the Add new packet button in the Send packets dialog. The
Add new packet dialog appears.

3. Click the HEX tab and type the name of the data packet: GET_EXAMPLE.
4. Copy and past the following text into the HEX input tab:

44 01 C4 09 74 65 73 74 B7 65 78 61 6D 70 6C 65
This is the CoAP protocol message decomposed by bytes to perform a GET request on an
example URI with a token test.

5. Click Add packet.

6. Click the Open button .
7. Click Send selected packet. The message is sent to the public CoAP server configured in

Configure the device. A response appears in the Console log. Blue text is the query, red text is
the response.

The payload is Get to uri: example, which specifies that this is a successful CoAP GET to URI end
example, which was specified in the query.
Click the Close button to terminate the serial connection.

Example: use Python to generate a CoAP message
This example illustrates how the CoAP protocol can perform GET/POST/PUT/DELETE requests
similarly to the HTTP protocol and how to do this using the XBee Cellular Modem. In this example, the
XBee Cellular Modem talks to a CoAP Digi Server. You can use this client code to provide an abstract
wrapper to generate a CoAP message that commands the XBee Cellular Modem to talk to the remote
CoAP server.

Note It is crucial to configure the XBee Cellular Modem settings. See Configure the device and follow
the steps. You can target the IP address to a different CoAP public server.

1. Install Python 2.7. The Installation guide is located at: python.org/downloads/.
2. Download and install the CoAPthon library in the python environment from

pypi.python.org/pypi/CoAPthon.
3. Download these two .txt files: Coap.txt and CoapParser.txt. After you download them, open the

files in a text editor and save them as .py files.
4. In the folder that you place the Coap.py and CoapParser.py files, press Shift + right-click and

then click Open command window.
5. At the command prompt, type python Coap.py and press Enter to run the program.
6. Type the USB port number that the XBee Cellular Modem is connected to and press Enter. Only

the port number is required, so if the port is COM19, type 19.

https://www.python.org/downloads/
https://pypi.python.org/pypi/CoAPthon

Examples: IOT protocols with transparent mode Get started with CoAP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 68

Note If you do not know the port number, open XCTU and look at the XBee Cellular Modem in the
Radio Modules list. This view provides the port number and baud rate, as in the figure below where
the baud rate is 9600 b/s.

7. Type the baud rate and press Enter. You must match the device's current baud rate.
XCTU provides the current baud rate in the BD Baud Rate field. In this example you would type
9600.

8. Press Y if you want an auto-generated example. Press Enter to build your own CoAP request.
9. If you press Y it generates a message with:

n Method: POST
n URI: example
n payload: hello world
n token: test

The send and receive message must match the same token and message id. Otherwise, the client re-
attempts the connection by sending out the request.
In the following figure, the payload contains the server response to the query. It shows the results for
when you press Enter rather than Y.

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 69

Get started with MQTT
MQ Telemetry Transport (MQTT) is a messaging protocol that is ideal for the Internet of Things (IoT)
due to a light footprint and its use of the publish-subscribe model. In this model, a client connects to a
broker, a server machine responsible for receiving all messages, filtering them, and then sending
messages to the appropriate clients.
The first two MQTT examples do not involve the XBee Cellular Modem. They demonstrate using the
MQTT libraries because those libraries are required for Use MQTT over the XBee Cellular Modem with
a PC.
The examples in this guide assume:

n Some knowledge of Python.
n An integrated development environment (IDE) such as PyCharm, IDLE or something similar.

The examples require:

n An XBee Cellular Modem.
n A compatible development board.
n XCTU. See Install and upgrade XCTU.
n That you install Python on your computer. You can download Python from:

https://www.python.org/downloads/.
n That you install the pyserial and paho-mqtt libraries to the Python environment. If you use

Python 2, install these libraries from the command line with pip install pyserial and pip
install paho-mqtt. If you use Python 3, use pip3 install pyserial and pip3 install paho-mqtt.

n The full MQTT library source code, which includes examples and tests, which is available in the
paho-mqtt github repository at https://github.com/eclipse/paho.mqtt.python. To download this
repository you must have Git installed.

Example: MQTT connect
This example provides insight into the structure of packets in MQTT as well as the interaction
between the client and broker. MQTT uses different packets to accomplish tasks such as connecting,
subscribing, and publishing. You can use XCTU to perform a basic example of sending a broker a
connect packet and receiving the response from the server, without requiring any coding. This is a
good way to see how the client interacts with the broker and what a packet looks like. The following
table is an example connect packet:

Description Hex value

CONNECT packet fixed header

byte 1 Control packet type 0x10

byte 2 Remaining length 0x10

CONNECT packet variable header

Protocol name

https://www.python.org/downloads/
https://github.com/eclipse/paho.mqtt.python

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 70

Description Hex value

byte 1 Length MSB (0) 0x00

byte 2 Length LSB (4) 0x04

byte 3 (M) 0x4D

byte 4 (Q) 0x51

byte 5 (T) 0x54

byte 6 (T) 0x54

Protocol level

byte 7 Level (4) 0x04

Connect flags

byte 8 CONNECT flags byte, see the table below for the bits. 0x02

Keep alive

byte 9 Keep Alive MSB (0) 0x00

byte 10 Keep Alive LSB (60) 0x3C

Client ID

byte 11 Length MSB (0) 0x00

byte 12 Length LSB (4) 0x04

byte 13 (D) 0x44

byte 14 (I) 0x49

byte 15 (G) 0x47

byte 16 (I) 0x49

The following table describes the fields in the packet:

Field name Description

Protocol Name The connect packet starts with the protocol name, which is MQTT. The length of
the protocol name (in bytes) is immediately before the name itself.

Protocol Level Refers to the version of MQTT in use, in this case a value of 4 indicates MQTT
version 3.1.1.

Connect Flags Indicate certain aspects of the packet. For simplicity, this example only sets the
Clean Session flag, which indicates to the client and broker to discard any
previous session and start a new one.

Keep Alive How often the client pings the broker to keep the connection alive; in this
example it is set to 60 seconds.

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 71

Field name Description

Client ID The length of the ID (in bytes) precedes the ID itself. Each client connecting to a
broker must have a unique client ID. In the example, the ID is DIGI. When using
the Paho MQTT Python libraries, a random alphanumeric ID is generated if you do
not specify an ID.

The following table provides the CONNECT flag bits from byte 8, the CONNECT flags byte.

CONNECT Flag Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

User name flag 0

Password flag 0

Will retain 0

Will QoS 0 0

Will flag 0

Clean session 1

Reserved 0

Send a connect packet
Now that you know what a connect packet looks like, you can send a connect packet to a broker and
view the response. Open XCTU and click the Configuration working mode button.

1. Ensure that the device is set up correctly with the SIM card installed and the antennas
connected as described in Connect the hardware.

2. Open XCTU and click the Configuration working mode button.
3. Add the XBee Cellular Modem to XCTU. See Add a device to XCTU.
4. Select a device from the Radio Modules list. XCTU displays the current firmware settings for

that device.

5. In the AP field, set Transparent Mode to [0] if it is not already and click the Write button.
6. In the DL field, type the IP address or the fully qualified domain name of the broker you wish to

use. This example uses test.mosquitto.org.
7. In the DE field, type 75B and set the port that the broker uses. This example uses 75B, because

the default MQTT port is 1883 (0x75B).
8. Once you have entered the required values, click the Write button to write the changes to the

XBee Cellular Modem.

9. Click the Consoles working mode button on the toolbar to open a serial console to the
device. For instructions on using the Console, see the AT console topic in the XCTU User Guide.

10. Click the Open button to open a serial connection to the device.

11. From the AT console, click the Add new packet button in the Send packets dialog. The
Add new packet dialog appears.

http://test.mosquitto.org/
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_at_console.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_90001458-13_start.htm%3FTocPath%3D_____1

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 72

12. Enter the name of the data packet. Name the packet connect_frame or something similar.
13. Click the HEX input tab and type the following (these values are the same values from the

table in Example: MQTT connect):
10 10 00 04 4D 51 54 54 04 02 00 3C 00 04 44 49 47 49

14. Click Add packet. The new packet appears in the Send packets list.
15. Click the packet in the Send packets list.
16. Click Send selected packet.
17. A CONNACK packet response from the broker appears in the Console log. This is a connection

acknowledgment; a successful response should look like this:

You can verify the response from the broker as a CONNACK by comparing it to the structure of a
CONNACK packet in the MQTT documentation, which is available at http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718081).

Example: send messages (publish) with MQTT
A basic Python example of a node publishing (sending) a message is:

mqttc = mqtt.Client("digitest") # Create instance of client with client ID
“digitest”
mqttc.connect("m2m.eclipse.org", 1883) # Connect to (broker, port,
keepalive-time)

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718081)
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718081)

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 73

mqttc.loop_start() # Start networking daemon
mqttc.publish("digitest/test1", "Hello, World!") # Publish message to
“digitest /test1” topic
mqttc.loop_stop() # Kill networking daemon

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

This example imports the MQTT library, allowing you to use the MQTT protocol via APIs in the library,
such as the connect(), subscribe(), and publish() methods.
The second line creates an instance of the client, named mqttc. The client ID is the argument you
passed in: digitest (this is optional).
In line 3, the client connects to a public broker, in this case m2m.eclipse.org, on port 1883 (the default
MQTT port, or 8883 for MQTT over TLS). There are many publicly available brokers available, you can
find a list of them here: https://github.com/mqtt/mqtt.github.io/wiki/brokers.
Line 4 starts the networking daemon with client.loop_start() to handle the background
network/data tasks.
Finally, the client publishes its message Hello, World! to the broker under the topic
digitest/backlog/test1. Any nodes (devices, phones, computers, even microcontrollers) subscribed to
that same topic on the same broker receive the message.
Once no more messages need to be published, the last line stops the network daemon with
client.loop_stop().

Example: receive messages (subscribe) with MQTT
This example describes how a client would receive messages from within a specific topic on the
broker:

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc): # The callback for when the
client connects to the broker

print("Connected with result code {0}".format(str(rc))) # Print result
of connection attempt

client.subscribe("digitest/test1") # Subscribe to the topic
“digitest/test1”, receive any messages published on it

def on_message(client, userdata, msg): # The callback for when a PUBLISH
message is received from the server.

print("Message received-> " + msg.topic + " " + str(msg.payload)) #
Print a received msg

client = mqtt.Client("digi_mqtt_test") # Create instance of client with
client ID “digi_mqtt_test”
client.on_connect = on_connect # Define callback function for successful
connection
client.on_message = on_message # Define callback function for receipt of a
message
client.connect("m2m.eclipse.org", 1883, 60) # Connect to (broker, port,
keepalive-time)
client.connect('127.0.0.1', 17300)

http://www.digi.com/resources/documentation/Digidocs/90002258/
https://github.com/mqtt/mqtt.github.io/wiki/brokers

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 74

client.loop_forever() # Start networking daemon

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

The first line imports the library functions for MQTT.
The functions on_connect and on_message are callback functions which are automatically called by
the client upon connection to the broker and upon receiving a message, respectively.
The on_connect function prints the result of the connection attempt, and performs the subscription.
It is wise to do this in the callback function as it guarantees the attempt to subscribe happens only
after the client is connected to the broker.
The on_message function prints the received message when it comes in, as well as the topic it was
published under.
In the body of the code, we:

n Instantiate a client object with the client ID digi_mqtt_test.
n Define the callback functions to use upon connection and upon message receipt.
n Connect to an MQTT broker at m2m.eclipse.org, on port 1883 (the default MQTT port, or 8883

for MQTT over TLS) with a keepalive of 60 seconds (this is how often the client pings the broker
to keep the connection alive).

The last line starts a network daemon that runs in the background and handles data transactions and
messages, as well as keeping the socket open, until the script ends.

Use MQTT over the XBee Cellular Modem with a PC
To use this MQTT library over an XBee Cellular Modem, you need a basic proxy that transfers a payload
received via the MQTT client’s socket to the serial or COM port that the XBee Cellular Modem is active
on, as well as the reverse; transfer of a payload received on the XBee Cellular Modem’s serial or COM
port to the socket of the MQTT client. This is simplest with the XBee Cellular Modem in Transparent
mode, as it does not require code to parse or create API frames, and not using API frames means
there is no need for them to be queued for processing.

1. To put the XBee Cellular Modem in Transparent mode, set AP to 0.
2. Set DL to the IP address of the broker you want to use.
3. Set DE to the port to use, the default is 1883 (0x75B). This sets the XBee Cellular Modem to

communicate directly with the broker, and can be performed in XCTU as described in Example:
MQTT connect.

4. You can make the proxy with a dual-threaded Python script, a simple version follows:

import threading
import serial
import socket

def setup():
"""
This function sets up the variables needed, including the serial port,
and it's speed/port settings, listening socket, and localhost adddress.
"""

http://www.digi.com/resources/documentation/Digidocs/90002258/

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 75

global clisock, cliaddr, svrsock, ser
Change this to the COM port your XBee Cellular module is using. On
Linux, this will be /dev/ttyUSB#
comport = 'COM44'
This is the default serial communication speed of the XBee Cellular
module
comspeed = 115200
buffer_size = 4096 # Default receive size in bytes
debug_on = 0 # Enables printing of debug messages
toval = None # Timeout value for serial port below
Serial port object for XBCell modem
ser = serial.Serial(comport,comspeed,timeout=toval)
Listening socket (accepts incoming connection)
svrsock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
Allow address reuse on socket (eliminates some restart errors)
svrsock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
clisock = None
cliaddr = None # These are first defined before thread creation
addrtuple = ('127.0.0.1', 17300) # Address tuple for localhost
Binds server socket to localhost (allows client program connection)
svrsock.bind(addrtuple)
svrsock.listen(1) # Allow (1) connection

def ComReaderThread():
"""
This thread listens on the defined serial port object ('ser') for data
from the modem, and upon receipt, sends it out to the client over the
client socket ('clisock').
"""
global clisock
while (1):

resp = ser.read() ## Read any available data from serial port
print("Received {} bytes from modem.".format(len(resp)))

clisock.sendall(resp) # Send RXd data out on client socket
print("Sent {} byte payload out socket to client.".format(len

(resp)))

def SockReaderThread():
"""
This thread listens to the MQTT client's socket and upon receiving a
payload, it sends this data out on the defined serial port ('ser') to

the
modem for transmission.
"""

global clisock
while (1):

data = clisock.recv(4096) # RX data from client socket
If the RECV call returns 0 bytes, the socket has closed
if (len(data) == 0):

print("ERROR - socket has closed. Exiting socket reader
thread.")

return 1 # Exit the thread to avoid a loop of 0-byte receptions
else:

print("Received {} bytes from client via socket.".format(len
(data)))

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 76

print("Sending payload to modem...")
bytes_wr = ser.write(data) # Write payload to modem via

UART/serial
print("Wrote {} bytes to modem".format(bytes_wr))

def main():
setup() # Setup the serial port and socket
global clisock, svrsock
if (not clisock): # Accept a connection on 'svrsock' to open 'clisock'

print("Awaiting ACCEPT on server sock...")
(clisock,cliaddr) = svrsock.accept() # Accept an incoming

connection
print("Connection accepted on socket")

Make thread for ComReader
comthread = threading.Thread(target=ComReaderThread)
comthread.start() # Start the thread
Make thread for SockReader
sockthread = threading.Thread(target=SockReaderThread)
sockthread.start() # Start the thread

main()

Note This script is a general TCP-UART proxy, and can be used for other applications or scripts that
use the TCP protocol. Its functionality is not limited to MQTT.

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

This proxy script waits for an incoming connection on localhost (127.0.0.1), on port 17300. After
accepting a connection, and creating a socket for that connection (clisock), it creates two threads,
one that reads the serial or COM port that the XBee Cellular Modem is connected to, and one that
reads the socket (clisock), that the MQTT client is connected to.
With:

n The proxy script running
n The MQTT client connected to the proxy script via localhost (127.0.0.1)
n The XBee Cellular Modem connected to the machine via USB and properly powered
n AP, DL, and DE set correctly

the proxy acts as an intermediary between the MQTT client and the XBee Cellular Modem, allowing
the MQTT client to use the data connection provided by the device.
Think of the proxy script as a translator between the MQTT client and the XBee Cellular Modem. The
following figure shows the basic operation.

http://www.digi.com/resources/documentation/Digidocs/90002258/

Examples: IOT protocols with transparent mode Get started with MQTT

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 77

The thread that reads the serial port forwards any data received onward to the client socket, and the
thread reading the client socket forwards any data received onward to the serial port. This is
represented in the figure above.
The proxy script needs to be running before running an MQTT publish or subscribe script.

1. With the proxy script running, run the subscribe example from Example: receive messages
(subscribe) with MQTT, but change the connect line from client.connect("m2m.eclipse.org",
1883, 60) to client.connect("127.0.0.1", port=17300, keepalive=20). This connects the
MQTT client to the proxy script, which in turn connects to a broker via the XBee Cellular
Modem’s internet connection.

2. Run the publish example from Example: send messages (publish) with MQTT in a third Python
instance (while the publish script is running you will have three Python scripts running at the
same time).

The publish script runs over your computer’s normal Internet connection, and does not use the XBee
Cellular Modem. You are able to see your published message appear in the subscribe script’s output
once it is received from the broker via the XBee Cellular Modem. If you watch the output of the proxy
script during this process you can see the receptions and transmissions taking place.
The proxy script must be running before you run the subscribe and publish scripts. If you stop the
subscribe script, the socket closes, and the proxy script shows an error. If you try to start the proxy
script after starting the subscribe script, you may also see a socket error. To avoid these errors, it is
best to start the scripts in the correct order: proxy, then subscribe, then publish.

Update the firmware

You should update your XBee to the latest firmware to take advantage of all the latest fixes and
features. Refer to the topics below for information about the available update methods.
Digi strongly recommends that you devise a plan to update the firmware after initial deployment. For
more information, see Create a plan for device and cellular component firmware updates.

Create a plan for device and cellular component firmware updates 79
Update the device and the cellular firmware using XCTU 80
Update the device firmware 82
Update the cellular firmware 88

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 78

Update the firmware Create a plan for device and cellular component firmware updates

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 79

Create a plan for device and cellular component firmware
updates

You should update your XBee to the latest firmware to take advantage of all the latest fixes and
features. Changes to the cellular network, security issues, or software bugs may be identified which
require firmware updates to resolve. In addition, Digi periodically releases new device firmware which
includes new features and improves reliability and performance of existing features. You should
evaluate and test the new releases and update your firmware to take advantage of the
improvements and new features.

Note Digi will not accept responsibility for customers who have not planned to update their units.
Please review the information provided below.

Please review the suggestions below:

n Always test device and any cellular component firmware updates before deploying these
updates to units in the field.

n If updates will be performed using a PC, XCTU is able to perform complete firmware updates
on all device cellular modems, including updating the cellular component firmware.

n If updates will be performed using a host processor, see Use a host processor to update the
modem firmware for XBee devices over UART.

n If updates will be performed over-the-air (OTA):
l If your XBee application is using API mode, monitor for Modem Status (0x8A) API frames

with status codes 0x38 through 0x3A. These modem status frames inform the XBee's host
application about ongoing and completed or failed firmware updates.

l If your XBee application is using Transparent mode, test your application to determine
whether it is tolerant to over-the-air firmware updates of the cellular component and XBee
firmware. If your application cannot tolerate the network connection being non-functional
for up to 30 minutes (for example, if the XBee will be reset in a shorter time than that), do
not use over-the-air updates, and be aware that firmware updates to the XBee require
user intervention.
o If the XBee firmware is updated over-the-air using Digi Remote Manager: After the new

firmware image has been downloaded and validated, the XBee modem reboots
automatically to install the firmware. The XBee then resets into the new firmware once
the update is complete, which may take up to 60 seconds.

o If the cellular component firmware is being updated: After the cellular firmware update
image has been downloaded, the XBee modem disconnects from the network and the
cellular component will be updated. This update will take up to 30 minutes. After the
update completes (or fails), the XBee will reconnect to the cellular network
automatically.

Update the firmware Update the device and the cellular firmware using XCTU

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 80

Update the device and the cellular firmware using XCTU
Use XCTU to update the device firmware, and if needed, XCTU will attempt to update your cellular
firmware.
Update the device and cellular firmware using XCTU

Note Before you begin, make sure you have XCTU installed and the device is added to the utility. See
Install and upgrade XCTU.

Update the device and cellular firmware using XCTU
You can use XCTU to update the device and cellular firmware. XCTU updates the device firmware to
the version you select, and then, if needed, XCTU will attempt to update your cellular firmware.

Prerequisites

n Windows PC
n Digi XCTU version 6.5.0 or newer. You should upgrade XCTU to the latest version.
n The device is added to XCTU. See Add a device to XCTU.
n Digi XBIB-CU-TH development board

To update the device and cellular firmware:

1. Launch XCTU .

2. Click the Configuration working modes button .
3. From the Radio Modules list, select the device that you want to update.
4. Verify the following configuration. The cellular component firmware update may not work if any

of these settings are enabled. Ensure the following:
n Airplane mode is disabled: ATAM set to 0
n Bypass mode is disabled: ATAP not 5

5. Click Update firmware. The Update the radio module firmware dialog appears and displays
the available and compatible device firmware for the selected XBee module.

6. Select the product family of the XBee module, the function set, and the latest firmware version
for the device.

7. Make sure you check the Force the module to maintain its current configuration to ensure
you do not lose any changes to your configuration.

8. If desired, you can select the Force the Cellular modem update option. When selected, the
cellular component is updated even if it is already on the newest firmware version. This step is
optional.

9. Click Update to update the device firmware.
10. If the cellular component firmware requires an update or if you selected the Force the

Cellular modem update option, a prompt displays.
11. Click OK to continue with the update process. XCTU performs the following:

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_install_xctu_updates.htm%3FTocPath%3DUpdate%2520software|_____3

Update the firmware Update the device and the cellular firmware using XCTU

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 81

n XCTU applies and updates the device firmware.
n If the cellular firmware is being updated, XCTU applies and updates the new cellular

firmware on the device.

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 82

Update the device firmware
You should update the device firmware on your XBee to the latest version to take advantage of all the
latest fixes and features. Security issues or software bugs may be identified which require firmware
updates to resolve. In addition, Digi periodically releases new firmware which includes new features
and improves reliability and performance of existing features.

n For information about updating the cellular firmware, see Update the cellular firmware.

n For information about using XCTU to update both the device firmware and, if needed, the
cellular firmware, see Update the device and the cellular firmware using XCTU.

The table below lists update methods you can use and the instructions for each method.

Method Instructions

FOTA (DRM) n Update the firmware from the Devices page in
Remote Manager

n Update the firmware using web services in Remote
Manager

n Schedule a task to update the device firmware
using Remote Manager

API Use a host processor to update the modem firmware for
XBee devices over UART

Update the firmware from the Devices page in Remote Manager
You can update the device firmware for one or multiple devices from the Devices page in Remote
Manager.
Before you begin, verify the TCP connection method your device uses to connect to Remote Manager:
query once a day or use a persistent TCP connection. See TCP connection.
To perform a firmware update:

1. Download the updated firmware file for your device from Digi's support site.
a. Go to the Digi XBee Cellular LTE CAT 1 support page.
b. Scroll down to the Firmware Updates section.
c. Locate and click XBee Cellular LTE Cat 1 Verizon Firmware to download the zip file.
d. Unzip the file.

2. Set up a persistent connection to connect the device to Remote Manager. See Restore
persistent connection to a remote XBee.

3. Log into Remote Manager.
4. In your Remote Manager account, click Device Management > Devices.
5. Select the first device you want to update. To select multiple devices (must be of the same

type), press the Control key and select additional devices.
6. Click More in the Devices toolbar and select More > Update > Update Firmware. The Update

Firmware dialog appears.

https://www.digi.com/support/productdetail?pid=5623&type=firmware
https://remotemanager.digi.com/

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 83

7. Click Browse to select the .ebin file that you unzipped earlier.
8. Click Update Firmware. The updated devices automatically reboot when the updates are

complete.

Note The update is immediately rejected and an error is returned if the device is going into
sleep mode or is being shut down. See Clean shutdown.

9. When all changes are complete, disconnect the device from Remote Manager.

Update the firmware using web services in Remote Manager
Remote Manager supports both synchronous and asynchronous firmware update using web services.
The following examples show how to perform an asynchronous firmware update. See the Remote
Manager documentation for more details on firmware updates.
Before you begin, verify the TCP connection method your device uses to connect to Remote Manager:
query once a day or use a persistent TCP connection. See TCP connection.

Note You must use XCTU to update the cellular component's firmware.

1. Download the updated firmware file for your device from Digi's support site.
a. Go to the Digi XBee Cellular LTE CAT 1 support page.
b. Scroll down to the Firmware Updates section.
c. Locate and click XBee Cellular LTE Cat 1 Verizon Firmware to download the zip file.
d. Unzip the file and locate the .ebin file in the unzipped directory.

2. Send an HTTP SCI request to Remote Manager with the contents of the downloaded .ebin file
converted to base64 data. Refer to the the following examples:
Examples for .ebin:

n Example: Update the XBee firmware synchronously using a local file
n Example: Update the XBee firmware synchronously using a Remote Manager Data File

Example: Update the XBee firmware synchronously using a local file

import base64
import requests

Location of firmware image
firmware_path = 'XBXC.ebin'

Remote Manager device ID of the device being updated
device_id = '00010000-00000000-03526130-70153378'

Remote Manager username and password
username = "my_Remote_manager_username"
password = "my_remote_manager_password"

url = 'https://remotemanager.digi.com/ws/sci'

Get firmware image
fw_file = open(firmware_path, 'rb')
fw_data = fw_file.read()
fw_data = base64.encodebytes(fw_data).decode('utf-8')

https://www.digi.com/resources/documentation/digidocs/90001436-13/default.htm#concepts/c_start_dc_rm.htm%3FTocPath%3DDigi%2520Remote%2520Manager%2520User%2520Guide|_____0
https://www.digi.com/support/productdetail?pid=5623&type=firmware

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 84

Form update_firmware request
data = """
<sci_request version="1.0">
<update_firmware filename="firmware.ebin">
<targets>
<device id="{}"/>

</targets>
<data>{}</data>

</update_firmware>
</sci_request>
""".format(device_id, fw_data)

Post request
r = requests.post(url, auth=(username, password), data=data)
if (r.status_code != 200) or ("error" in r.content.decode('utf-8')):

print("firmware update failed")
else:

print("firmware update success")

Example: Update the XBee firmware synchronously using a Remote Manager Data
File
To update the XBee firmware synchronously with Python 3.0, but using the device firmware image
already uploaded to Remote Manager, upload the device's *.ebin firmware to Remote Manager:

1. Download the updated firmware file for your device from Digi's support site. This is a zip file
containing .ebin and .mxi files for import.

2. Unzip the file and locate the .ebin inside the unzipped directory.
3. Log in to Remote Manager.
4. Click the Data Services tab.
5. Click Data Files.
6. Click Upload Files; browse and select the *.ebin firmware file to upload it.
7. Send an HTTP SCI request to Remote manager with the path of the .ebin file; see the example

below.

import base64
import requests

Location of firmware image on Remote Manager
firmware_path = '~/XBXC.ebin'

Remote Manager device ID of the device being updated
device_id = '00010000-00000000-03526130-70153378'

Remote Manager username and password
username = "my_remote_manager_username"
password = "my_remote_manager_password"

url = 'https://remotemanager.digi.com/ws/sci'

Form update_firmware request
data = """
<sci_request version="1.0">
<update_firmware filename="firmware.ebin">

https://www.digi.com/support/productdetail?pid=5622

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 85

<targets>
<device id="{}"/>

</targets>
<file>{}</file>

</update_firmware>
</sci_request>
""".format(device_id, firmware_path)

Post request
r = requests.post(url, auth=(username, password), data=data)
if (r.status_code != 200) or ("error" in r.content.decode('utf-8')):

print("firmware update failed")
else:

print("firmware update success")

Use a host processor to update the modem firmware for XBee
devices over UART
This process explains how to update the modem firmware for XBee Cellular devices.

Update the modem firmware

1. Make sure you have the correct version of the modem firmware for your XBee device.
2. Enter programming (bootloader) mode. Use one of the following methods: AT commands or

hardware signaling.
n AT commands

a. Send the %P command. The %P command must be sent an argument derived from
the SL parameter of the module being updated. The argument is the value of SL
added to the value 0xDB8A and then masked by performing a bitwise-AND with
0x3FFF.

i. Run ATSL to get the address value, which is in hex.

ATSL
123456

ii. Add bitwise-AND with 0x3FFF.

(0xDB8A + 0x123456) & 0x3FFF= 0x0FE0

iii. Send the command AT%PFE0.

AT%PFE0

b. You will receive an error, which is expected.
c. Send the FR command to reboot and enter into bootloader.

n Invoke the bootloader with hardware signaling
a. De-Assert RTS (pin 16).
b. Assert DTR (pin 9).
c. Put DIN in a low state (break) (pin 3).
d. Reset the module (pin 5).

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 86

e. Release the break on DIN (pin 3) The module should now be in bootloader at 38400
baud.

3. Once the module is in programming (bootloader) mode, configure the local serial port to
38400/8/N/1.

4. Get the hardware version of the radio module from the bootloader.
a. Send the V command. The response to that command has the following format:

XXXXYYYYZZAABBBBCCCCCCCCCCCCCCCC n XXXX: The hardware version.
See ATHV, little endian.

n YYYY: The hardware revision.
See AT%R, little endian.

n ZZ: The hardware compatibility
number. See AT%C.

n AA: Unused and should be 0.
n BBBB: The hardware series. See

ATHS, little endian.
n CCCCCCCCCCCCCCCC: The

serial number.

5. If possible, change the baud rate of the serial port to optimize the firmware update process.
Send the X command to the bootloader.

n The bootloader answers with the maximum supported baud rate (in ASCII) and, just
after that, the bootloader changes its baud rate to that value. Change your baud rate to
match the max supported rate.

n If the bootloader does not answer to this command, remain at the current rate.
6. Send the I command (initialization command). This command erases the current firmware from

the device.
7. Transfer the firmware to the device using the transfer protocol shown below.

Transfer the firmware to the device

1. You must split the file into 512 byte blocks.
2. Transfer each block using the following structure, with block index and CRC16 sent in little

endian byte:
P [2 bytes for block index] [block data with page size length] [2 bytes for CRC16]

Note CRC16 is calculated only with the bytes of the page to be sent, and is initialized with
0x0000. The polynomial used for the CRC16 is 0x8005.

3. After each block is transfered, wait for a response. Options are:
n 0x55 - ACK: This is the expected answer.
n 0x12: Checksum/CRC16 error.
n 0x13: Flash write/verify error.

Note If an error occurs, you may try to transfer each block up to three times.

Update the firmware Update the device firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 87

4. Verify and write the firmware to flash.
a. Send the C command (verify) to verify and write the firmware to the flash.
b. Verify that the answer to this command is 0x55 (ACK). Any other result is an error.

5. Wait a couple of seconds for the firmware to be installed and start running.

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 88

Update the cellular firmware
You should update the cellular firmware on your device to take advantage of all the latest fixes and
features.

Note You should also create a plan to update the cellular component firmware on a regular basis,
after initial deployment. Security issues or software bugs may be identified which require firmware
updates to resolve.

n For information about updating the device firmware, see Update the device firmware.
n For information about using XCTU to update both the device firmware and, if needed, the

cellular firmware, see Update the device and the cellular firmware using XCTU.

Method Instructions

FOTA (DRM) Update the cellular component firmware using
Remote Manager

API Update the cellular firmware using the API

USB Not supported

Update the cellular component firmware using Remote Manager
You can update the firmware for a device's cellular component using Remote Manager.

Prerequisites

n Remote Manager account created and an XBee cellular device added.
n XBee cellular device must be connected to Remote Manager to initiate update.
n The device ID of the XBee cellular device that you want to update.

Applicable update files
The upgrade from 23.00.004 to 23.00.006 is a two-file upgrade:

n First upgrade: 23.00.004 to 23.00.004-B401
n Second upgrade: 23.00.004-B401 to 23.00.006

Note Customers must apply both upgrades. Applying only the first upgrade without the second will
result in a product that is on an intermediate version not intended for production use.

These upgrade files are hosted on ftp1.digi.com under the directory support/telit. See Determine
the location of the firmware version.

Current version Target version File for upgrade

23.00.004 23.00.004-B401 23.00.004__23.00.004-B401__LE866-SV1.ua

23.00.004-B401 23.00.006 23.00.004-B401__23.00.006__LE866-SV1.ua

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 89

Determine the location of the firmware version
You must first determine the location of the firmware version to which you want to update. Digi
provides updates by hosting them on an FTP server: ftp1.digi.com. If the FTP location is not
accessible to your XBee Cellular, such as if you are using a VPN, the files may be retrieved and hosted
separately on a server that it can reach.
Firmware is provided in the form of delta images which will migrate the cellular component from a
known source to a given target version. You can verify the firmware version level of the cellular
component using the MV (Modem Version) AT command. Check documentation and release notes for
your XBee Cellular variant to determine the necessary upgrade path for your product.
You will need:

n The FTP hostname or IP address, which for Digi hosted files is: ftp1.digi.com
n The port running the FTP server, which is typically 21
n Username. For ftp1.digi.com, use: anonymous
n Password. For ftp1.digi.com, use your email address.
n Directory path containing update file.
n Update image filename.

Form the update request
A request to perform an update is communicated to the XBee Cellular through Remote Manager by
using the Data Services Device Request feature. The device request should be sent to the FTP_OTA
target and the payload of the request is the concatenation of the six fields identifying the full FTP
location of the update file using the NUL byte as a delimiter. We recommend using the base64
encoded binary transport option to avoid issues representing the request in XML.
For example, you want to update a module with the file sample.bin in the support/example directory
on Digi's FTP server.
The full body of the request:

The base64 encoded representation of the payload in turn:
ZnRwMS5kaWdpLmNvbQAyMQBhbm9ueW1vdXMAZXhhbXBsZUBkaWdpLmNvbQBzdXBwb3J0L2
V4YW1wbGUAc2FtcGxlLmJpbg==

The full Remote Manager device request is as shown below. Make sure to replace the Device ID
attribute with the ID for your device.

<sci_request version="1.0">
<data_service>
<targets>
<device id="Your device ID here"/>
</targets>
<requests>
<device_request target_name="FTP_OTA" format="base64">

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 90

ZnRwMS5kaWdpLmNvbQAyMQBhbm9ueW1vdXMAZXhhbXBsZUBkaWdpLmNvbQBzdXBwb3J0L2V4Y
W1wbGUAc2FtcGxlLmJpbg==

</device_request>
</requests>
</data_service>
</sci_request>

Perform the update
Once the update details have been established and the device request body written, the update is
performed by doing an HTTP POST operation to the /ws/sci API endpoint of Remote Manager.
You can do this manually from the Remote Manager API Explorer.

1. Log into Remote Manager.
2. Select Documentation > API Explorer. The API Explorer page appears.
3. In the Path field, select or type: /ws/sci
4. Select the POST HTTP method option.
5. Copy the full Remote Manager device request you created in the previous step: Form the

update request.
6. Paste the copied SCI request into the window below the HTTP Method selection section.

7. Click Send to initiate the update.

Note Do not be alarmed if Remote Manager indicates that the device has disconnected. This is
normal, as performing the update requires a reboot, and the network connection is
temporarily disconnected during the reboot.

Validate the update
After the update has been triggered, it may take up to 30 minutes for the update to be applied and for
the module to be connected to the network once more. If the XBee is not configured to automatically

https://remotemanager.digi.com/

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 91

connect to Digi Remote Manager, you will need to reconnect to Remote Manager to perform
validation.
You can check that the update process has succeeded by reading the MV parameter value. After the
update is complete, the version should reflect the desired target version.

Update the cellular firmware using the API
You can update the cellular component using the API.
In addition to knowing which cellular component firmware is required for a given release of the
module firmware, the host program needs to know which firmware versions for the module support a
cellular component firmware update. For example, if Release 3 is the first version of the module
firmware that supports cellular component firmware updates, you must update it before updating the
cellular component firmware. But to downgrade from Release 3 or greater to Release 2 or less, you
must downgrade the cellular component firmware before downgrading the module firmware.
Otherwise, the older firmware would not be able to downgrade the cellular component firmware.

Important notes
Consider the following before performing a cellular component firmware update.

Note Digi recommends that you perform a cellular firmware update using XCTU.

CAUTION! Avoid interrupting the process if possible. An interruption requires starting over. If
the interruption occurs while the bootloader is being updated (part number 82004156) the
device may not be recoverable.

n When downgrading the module firmware to version 1009 or earlier, Perform a cellular
component firmware update using API mode before the module firmware is updated.

n When updating to module firmware version 100A or later, Perform a cellular component
firmware update using API mode after the module firmware is updated.

n With the cellular component firmware updated, the APN is lost from the cellular component
configuration, even though it remains on the module configuration. To resolve this, re-enter AN
(Access Point Name) and re-apply it for the cellular component to connect to the cellular
network.

Perform a cellular component firmware update using API mode
This topic specifies how a host program can perform a cellular component firmware update without
XCTU.

Note Digi recommends that you perform a cellular firmware update using XCTU.

The cellular component firmware consists of two entities:

n Part number 82004156, which is the code for the bootloader on the Telit module
n Part number 82004015, which is the cellular code for the Telit module

Just as there is an association between module firmware releases and cellular component firmware
releases, there is also an association between bootloader and cellular code for the cellular
component. Once it is determined that a cellular component update is needed, the bootloader (part
number 82004156) should be updated followed by the cellular code (part number 82004015).

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 92

1. Configure the module at a high baud rate. 460,800 (BD = 9) or 921,600 (BD = 0xA) is best to
optimize speed.

2. Configure the module in API mode (AP = 1).
3. Set up the host program to a matching baud rate and API mode.
4. Update the bootloader file (part number 82004156)

a. Send the first block of the file with ID set to 0 and bit 0 of the flags byte set to indicate the
first frame. The size of the block does not matter as long as it is less than maximum buffer
size (1500 bytes).

b. Wait for an ACK before proceeding. An ACK comes in a FW Update Response - 0xAB with a
status of 0. Under normal conditions, the ACK occurs within 100 ms. However, some
responses have been measured to take 80 seconds. To be safe it is best not to timeout on
the response for 90 seconds.

c. Send all but the last frame of the file with incrementing values for the ID and all bits in the
Flags field cleared. Wait for an ACK between each frame sent.

d. Send the last block of the file with the next ID and with bit 1 set to indicate last frame. Wait
for an ACK on the final case.

5. Update the cellular code file (part number 82004015) using the same steps as the bootloader
file.

After the final ACK is received for both the bootloader file and the cellular code file, the cellular
component firmware update is complete.

WARNING! With the cellular component firmware updated, the APN is lost from the cellular
component configuration, even though it remains on the module configuration. To resolve
this, re-enter AN (Access Point Name) and re-apply it for the cellular component to connect
to the cellular network.

As a verification, enter MV (Modem Firmware Version) to reveal the version of the cellular component
firmware.

Note The AI status must be 0x23 or 0 for MV to give a valid response.

About cellular firmware updates using the API
An XBee Cellular Modem contains two processors: a microcontroller that controls most operations of
the module, and a cellular component. Both processors contain firmware that you can update. For any
given release of the microcontroller firmware (after this referred to as the module firmware), there is
an associated release of the cellular component firmware. One or more releases of the module
firmware is associated with a given cellular component firmware. However, for a given module
firmware, there is only one associated release of the cellular component firmware. The following table
depicts an example of this with arbitrary release numbers:

Module firmware Cellular component firmware

Release 1 Release A

Release 2 Release A

Update the firmware Update the cellular firmware

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 93

Module firmware Cellular component firmware

Release 3 Release B

Release 4 Release C

Release 5 Release C

Release 6 Release C

Release 7 Release D

Note The module version number keeps incrementing whether or not the cellular component
firmware version increases.

Error recovery
Several different types of errors can occur during an API cellular firmware update.

Corrupted firmware on the cellular component
If something goes wrong during a firmware update, (such as a loss of power), the firmware on the
cellular component may be corrupted. This is indicated by an AI status of 0x24. If you see this status,
reset the module (you can use FR) and then follow the steps in Perform a cellular component
firmware update using API mode to redo the cellular component firmware update.

Error
An error occurs when FW Update Response - 0xAB returns a non-zero status code. This can be caused
by a programming error on the host side (such as out of order sequence numbers), a software error
on the module side (such as too short of a timeout waiting for responses from the cellular
component), or an invalid image of the cellular component firmware. When this occurs, the firmware
update is aborted such that it cannot be picked up from where it left off. The only reliable recovery is
to reset the module and then immediately Perform a cellular component firmware update using API
mode.

Host initiated cancellation
If the host sets bit 2 of the flags byte in FW Update - 0x2B, the update in progress is aborted. Recovery
is then equivalent to the recovery for negative acknowledgments, described above.

General case
Regardless of the reason for the error, a cellular component firmware update should always work
within ten seconds of a reset and after AI is 0x23 or 0.

Technical specifications

Interface and hardware specifications 95
RF characteristics 95
Networking specifications 95
Power requirements 95
Power consumption 96
Electrical specifications 96
Regulatory approvals 97

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 94

Technical specifications Interface and hardware specifications

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 95

Interface and hardware specifications
The following table provides the interface and hardware specifications for the device.

Specification Value

Dimensions 2.438 x 3.294 cm (0.960 x 1.297 in)

Weight 5 g (0.18 oz)

Operating temperature -40 to +80 °C

Antenna connector U.FL for primary and secondary antennas

Digital I/O 13 I/O lines

ADC 4 12-bit analog inputs

RF characteristics
The following table provides the RF characteristics for the device.

Specification Value

Modulation LTE/4G – QPSK, 16 QAM

Transmit power 23 dBm

Receive sensitivity -102 dBm

Over-the-air maximum data rate 10 Mb/s

Networking specifications
The following table provides the networking and carrier specifications for the device.

Specification Value

Addressing options TCP/IP and SMS

Carrier and technology Verizon 4G LTE Cat 1

Supported bands 4 and 13

Security TLS

Power requirements
The following table provides the power requirements for the device.

Technical specifications Power consumption

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 96

Specification Value

Supply voltage 3.0 to 5.5 V

Extended voltage range 2.7 to 5.5 VDC

Power consumption
The peak current was measured from multiple tested units.

Specification State Average current Measured peak current

Tx+RX current Active transmit, 23 dBm @ 3.3 V 860 mA 1020 mA

Tx+RX current Active transmit, 23 dBm @ 5.0 V 555 mA 630 mA

TX Only current Active transmit, 23 dBm @ 3.3 V 680 mA N/A

Rx + ACK current Active receive @ 3.3 V 530 mA N/A

Rx + ACK current Active receive @ 5 V 360 mA N/A

RX Only current Active receive @ 3.3 V 300 mA N/A

Idle current Idle/connected, listening @ 3.3 V 143 mA N/A

Idle current Idle/connected, listening @ 5 V 100 mA N/A

Sleep current Not connected, Deep Sleep @ 3.3 V 10 µA N/A

Electrical specifications
The following table provides the electrical specifications for the XBee Cellular Modem.

Symbol Parameter Condition Min Typical Max Units

VCCMAX Maximum
limits of VCC
line

0 5.5 V

VDD_IO Internal supply
voltage for I/O

While in deep sleep
and during initial
power up

Min
(VCC-
0.3, 3.3)

3.3 V

VDD_IO Internal supply
voltage for I/O

In normal running
mode

3.3 V V

VI Voltage on any
pin

-0.3 VDD_IO +
0.3

V

VIL Input low
voltage

0.3*VDD_
IO

V

Technical specifications Regulatory approvals

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 97

Symbol Parameter Condition Min Typical Max Units

VIH Input high
voltage

0.7*VDD_IO V

VOL Voltage output
low

Sinking 6 mA VDD_IO
= 3.3 V

0.2*VDD_
IO

V

VOH Voltage output
high

Sourcing 6 mA VDD_IO
= 3.3 V

0.75*VDD_
IO

V

I_IN Input leakage
current

High Z state I/O
connected to Ground
or VDD_IO

0.1 100 nA

RPU Internal pull-up
resistor

Enabled 40 kΩ

RPD Internal pull-
down resistor

Enabled 40 kΩ

Regulatory approvals
The following table provides the regulatory and carrier approvals for the device.

Note The contains statement of FCC and IC IDs listed on the customer labels must match the ID
visible on the XBee device that is installed.

Specification Value Value

Model XBCEL XBCEL

Revision XBC-V1-UT-001 version M and
prior
XBC-V1-UT-102 version F and prior

XBC-V1-UT-001 version N and later
XBC-V1-UT-102 version G and later

United States Contains FCC ID: RI7LE866SV1 Contains FCC ID: RI7LE866SV1A

Innovation, Science and
Economic Development
Canada (ISED)

Contains IC: 5131A-LE866SV1 Contains IC: 5131A-LE866SV1A

Europe (CE) N/A N/A

RoHS Lead-free and RoHS compliant Lead-free and RoHS compliant

Australia N/A N/A

Verizon end-device
certified

Yes Yes

Hardware

Mechanical drawings 99
Pin signals 99
XBee header connector requirements 101
RSSI PWM 101
SIM card 102
Associate LED functionality 102
Development boards 103

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 98

Hardware Mechanical drawings

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 99

Mechanical drawings
The following figures show the mechanical drawings for the XBee Cellular Modem. All dimensions are
in inches.
For XBee header information, see XBee header connector requirements.

Pin signals
The pin locations are:

The following table shows the pin assignments for the through-hole device. In the table, low-asserted
signals have a horizontal line above signal name.

Hardware Pin signals

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 100

Pin Name Direction Default Description

Pin Name Direction Default Description

1 VCC Power supply

2 DOUT Output Output UART Data Out

3 DIN / CONFIG Input Input UART Data In

4 DIO12 / SPI_MISO Either Disabled Digital I/O 12 or SPI
Slave Output line

5 RESET Input

6 PWM0 / RSSI / DIO10 Either Output PWM Output 0 / RX
Signal Strength
Indicator / Digital I/O 10

7 DIO11 Either Disabled Digital I/O 11

8 [reserved] Do not connect

9 DTR / SLEEP_RQ/ DIO8 Either Disabled Pin Sleep Control Line or
Digital I/O 8

10 GND Ground

11 DIO4 / SPI_MOSI Either Disabled Digital I/O 4 or SPI Slave
Input Line

12 CTS / DIO7 Either Output Output Clear-to-Send
Flow Control or Digital
I/O 7

13 ON /SLEEP/DIO9 Output Output Module Status Indicator
or Digital I/O 9

14 VREF - Feature not supported
on this device. Used on
other XBee devices for
analog voltage
reference.

15 Associate / DIO5 Either Output Associated Indicator,
Digital I/O 5

16 RTS / DIO6 Either Disabled Input Request-to-Send
Flow Control, Digital I/O
6

17 AD3 / DIO3 / SPI_SS Either Disabled Analog Input 3 or Digital
I/O 3, SPI low enabled
select line

Hardware XBee header connector requirements

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 101

Pin Name Direction Default Description

18 AD2 / DIO2 / SPI_CLK Either Disabled Analog Input 2 or Digital
I/O 2, SPI Clock line

19 AD1 / DIO1 / SPI_ATTN Either Disabled Analog Input 1 or Digital
I/O 1, SPI Attention line
output

20 AD0 / DIO0 Either Input Analog Input 0, Digital
I/O 0

Pin connection recommendations
The recommended minimum pin connections are VCC, GND, DIN, DOUT, RTS, DTR and RESET.
Firmware updates require access to these pins.

XBee header connector requirements
The XBee header connectors require the following attributes:

n female
n 2 mm pitch
n 10 positions
n single row

RSSI PWM
The XBee Cellular Modem features an RSSI/PWM pin (pin 6) that, if enabled, adjusts the PWM output to
indicate the signal strength of the cellular connection. Use P0 (DIO10/PWM0 Configuration) to enable
the RSSI pulse width modulation (PWM) output on the pin. If P0 is set to 1, the RSSI/PWM pin outputs a
PWM signal where the frequency is adjusted based on the received signal strength of the cellular
connection.
The RSSI/PWM output is enabled continuously unlike other XBee products where the output is enabled
for a short period of time after each received transmission. If running on the XBIB development board,
DIO10 is connected to the RSSI LEDs, which may be interpreted as follows:

PWM duty cycle
Number of LEDs turned
on Received signal strength (dBm)

79.39% or more 3 -83 dBm or higher

62.42% to
79.39%

2 -93 to -83 dBm

45.45% to
62.42%

1 -103 to -93 dBm

Less than
45.45%

0 Less than -103 dBm, or no cellular network
connection

Hardware SIM card

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 102

SIM card
The XBee Cellular Modem uses a 4FF (Nano) size SIM card.

CAUTION! Never insert or remove SIM card while the power is on!

Associate LED functionality
The following table describes the Associate LED functionality. For the location of the Associate LED on
the XBIB-U development board, see number 6 on the XBIB-U-DEV reference.

LED status
Blink
timing Meaning

On, solid Not joined to a mobile network.

Double blink ½ second The last TCP/UDP/SMS attempt failed. If the LED has this
pattern, you may need to check DI (Remote Manager
Indicator) or CI (Protocol/Connection Indication) for the cause
of the error.

Note This pattern applies only to the Transparent mode.
Other transmission modes do not affect the Associate LED
blink pattern.

Standard single blink 1 second Normal operation.

The normal association LED signal alternates evenly between high and low as shown below:

Where the low signal means LED off and the high signal means LED on.
When CI is not 0 or 0xFF, the Associate LED has a different blink pattern that looks like this:

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 103

Development boards

XBIB-U-DEV reference
This picture shows the XBee USB XBIB-U-DEV development board and the table that follows explains
the call-outs in the picture.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 104

Number Item Description

1 Programming header Header used to program XBee programmable devices.

2 Self power module Advanced users only—voids the warranty. Depopulate R31 to
power the device using V+ and GND from J2 and J5. You can
connect sense lines to S+ and S- for sensing power supplies.

CAUTION: Voltage is not regulated. Applying the incorrect

voltage can cause fire and serious injury.1

3 Current testing Depopulating R31 allows a current probe to be inserted across
P6 terminals. The current though P6/R31 powers the device
only. Other supporting circuitry is powered by a different
trace.

4 Loopback jumper Populating P8 with a loopback jumper causes serial
transmissions both from the device and from the USB to
loopback.

5 DC barrel plug: 6-20 V Greater than 500 mA loads require a DC supply for correct
operation. Plug in the external power supply prior to the USB
connector to ensure that proper USB communications are not
interrupted.

6 LED indicator Yellow: Modem sending serial/UART data to host.
Green: Modem receiving serial/UART data from host.
Red: Associate.

7 USB Connects to your computer.

8 RSSI indicator See RSSI PWM. On the XBIB-U, more lights are better.

9 User buttons Connected to DIO lines for user implementation.

10 Reset button Press the reset button to reset the device to the default
configuration.

11 SPI power Connect to the power board from 3.3 V.

12 SPI Only used for surface-mount devices.

13 Indicator LEDs DS5: ON/SLEEP
DS2: DIO12, the LED illuminates when driven low.
DS3: DIO11, the LED illuminates when driven low.
DS4: DIO4, the LED illuminates when driven low.

14 Through-hole XBee
sockets

1Powering the board with J2 and J5 without R31 removed can cause shorts if the USB or barrel plug power are
connected. Applying too high a voltage destroys electronic circuitry in the device and other board components
and/or can cause injury.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 105

Number Item Description

15 20-pin header Maps to standard through-hole XBee pins. Male, Samtec
header, part number: TSW-110-26-L-D. 2.54 mm / .100" pitch
and row spacing.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 106

XBIB-CU-TH reference
This picture shows the XBee-CU-TH development board and the table that follows explains the
callouts in the picture.

Note This module is sold separately.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 107

Number Item Description

1 Secondary USB
(USB MICRO B)
and DIP Switch

Secondary USB Connector for direct programming of modules on
some XBee units. Flip the Dip switches to the right for I2C access to
the board; flip Dip switches to the left to disable I2C access to the
board. The USB_P and USB_N lines are always connected to the
XBee, regardless of Dip switch setting. USB communications will fail
if switches are not in the left position or if XBEE is not configured to
enable USB communications.

This USB port is not designed to power the module or the board. A
USB-C cable or battery port is required to power the board. Cable
can be connected at any time, with the XBe powered or unpowered.

WARNING! USB micro port should not be connected
when used with XBees that do not support USB
communications.

2 Current Measure Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the
3.3 V line on the development board. This allows current
measurement to be conducted by attaching a current meter across
the jumper P10.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 108

Number Item Description

3 Battery
Connector

If desired, a battery can be attached to provide power to the
development board. The voltage can range from 2 V to 5 V. The
positive terminal is on the left.
If the USB-C connector is connected to a computer, the power will
be provided through the USB-C connector and not the battery
connector.

WARNING! Battery current discharge rating must be
enough to support 5 W or more.

WARNING! There is no circuit to prevent over discharge
of battery. Battery must contain its own protection
circuitry.

WARNING! Move UART switches to the OFF position
when using battery or external power or for when the
XBee and the USB-C connector is not powering the UART.

Note Power supply outputs 3.3 V to XBee regardless of input voltage
as long as current requirement can be met to achieve power
consumption of devices.

4 USB-C Connector Provides power and UART communications for the XBEE and
development board.

Note Requires USB 3.0 to supply 1 amp of required current. USB 2.0
ports that cannot supply at least 1 amp cannot be used.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin to GND
when pressed.

RESET button resets the XBee module when pressed.

7 Breakout
Connector

This 40 pin connects to various XBee pins as shown on the silkscreen
on the bottom of the board.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 109

Number Item Description

8 UART Dip Switch Push Dip switches to the right (OFF position) to disconnect USB-to-
UART conversion chip from the XBee. This allows UART lines to be
individually selected to connect through the breakout connector or
the USB-C interface.

9 Grove Connector This connector attaches I2C-enabled devices to the development
board. Note that I2C needs to be available on the XBee in the board
for this functionality to be used.
Move both USB direct connect switches to the right (closed position)
and disconnect the USB micro port for correct operation of the I2C
to connector.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This part is a Texas Instruments HDC1080 temperature and
humidity sensor connected through I2C on XBee pins DIO1 and
DIO11. Move both USB direct connect switches to the right (closed
position) and disconnect the USB micro port for correct operation of
the I2C sensor.

11 XBee Socket This is the socket for the XBee (TH form factor).

12 XBee Test Point
Pins

Allows easy access to pins 1 to 20 of the XBee.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 110

XBIB-C-GPS reference
This picture shows the XBIB-C-GPS module and the table that follows explains the callouts in the
picture.

Note This GPS module is sold separately and requires an XBIB-CU-TH development board.

Note You run a demo using MicroPython to parse UART to GPS communications. see Run the
MicroPython GPS demo.

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 111

Number Item Description

1 40-pin
header

This header is used to connect the XBIB-C-GPS board to a compatible XBIB
development board. Insert the XBIB-C-GPS module slowly with alternating
pressure on the upper and lower parts of the connector. Do not bend pins
during insertion or removal process.

2 GPS unit Contains GPS module CAM-M8Q-0-10. Proper orientation is with the board
laying flat, with the GPS module having a clear view of the sky.

Interface with the XBIB-C-GPS module
The XBee Cellular Modem can interface with the XBIB-C-GPS board through the 40-pin header. This
header is designed to fit into XBIB-C development board. This allows the XBee Cellular Modem in the
XBIB-C board to communicate with the XBIB-C-GPS board—provided the XBee device has MicroPython
capabilities (see this link to determine which devices have MicroPython capabilities). There are two
ways to interface with the XBIB-C-GPS board: through the host board’s Secondary UART or through
the I2C compliant lines.
The following picture shows a typical setup:

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_features.htm%3FTocPath%3D_____2

Hardware Development boards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 112

I2C communication

There are two I2C lines connected to the host board through the 40-pin header, SCL and SDA. I2C
communication is performed over an I2C-compliant Display Data Channel. The XBIB-C-GPS module
operates in slave mode. The maximum frequency of the SCL line is 400 kHz. To access data through
the I2C lines, the data must be queried by the connected XBee Cellular Modem.
For more information about I2C Operation see the I2C section of the Digi Micro Python Programming
Guide.
For more information on the operation of the XBIB-C-GPS board see the CAM-M8 datasheet. Other
CAM-M8 documentation is located here.

UART communication
UART (RX and TX) are pins connected from the XBIB-C-GPS to the host board by the 40-pin header. By
default, the UART on the XBIB-C-GPS board is active and sends GPS readings once every second. The
baud rate of the UART is 9600 baud.
For more information about using Micro Python to communicate to the XBIB-C-GPS module, see Class
UART.

Run the MicroPython GPS demo
The Digi MicroPython github repository contains a GPS demo program that parses the GPS NMEA data
from the UART and prints them.

Note If you are unfamiliar with MicroPython on XBee, see Get started with MicroPython. For more
detailed information, refer to the Digi MicroPython Programming Guide.

Step 1: Clone or download the XBee MicroPython repository

1. Navigate to: https://github.com/digidotcom/xbee-micropython/
2. You must either clone or download a zip file of the repository. You can use either method.

n Clone: If you are familiar with Git, follow the standard Git process to clone the
repository.

n Download
a. Click Download zip to download a zip file of the repository to the download folder

of your choosing.
b. Extract the repository to a location of your choosing on your hard drive.

Step 2: Edit the MicroPython file

1. Navigate to the location that you created in Step 1.
2. Navigate to: samples/gps_uart
3. Open the MicroPython file: main.py

Step 3: Run the program

1. Copy the file onto your device's root filesystem directory.

2. Open XCTU and use the MicroPython Terminal to run the demo.
3. Type <CTRL>-R from the MicroPython prompt to run the code.

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.u-blox.com/sites/default/files/CAM-M8-FW3_DataSheet_(UBX-15031574).pdf
https://www.u-blox.com/en/product/cam-m8-series#tab-documentation-resources
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/digidocs/90002219/
http://cms.digi.com/resources/documentation/digidocs/90002219/#tasks/t_import_libs.htm?Highlight=copy%20file

Antenna recommendations

Antenna specifications
This equipment complies with FCC and IC radiation exposure limits set forth for an uncontrolled
environment. The antenna should be installed and operated with minimum distance of 20 cm between
the radiator and your body. Antenna gain must be below:

Frequency band Gain

Band 4 (1700 MHz) 12.9 dBi

Band 13 (700 MHz) 6.0 dBi

This transmitter must not be co-located or operating in conjunction with any other antenna or
transmitter.
Cet appareil est conforme aux limites d'exposition aux rayonnements de la IC pour un environnement non
contrôlé. L'antenne doit être installé de façon à garder une distance minimale de 20 centimètres entre la
source de rayonnements et votre corps. Gain de l'antenne doit être ci-dessous:

Bande de fréquence Gain

Band 4 (1700 MHz) 12.9 dBi

Band 13 (700 MHz) 6.0 dBi

L’émetteurs ne doit pas être colocalisé ni fonctionner conjointement avec à autre antenne ou autre
émetteur.

Antenna connections

CAUTION! The XBee Cellular Modem will not function properly with only the secondary
antenna port connected!

The XBee Cellular Modem has two U.FL antenna ports; a primary on the upper left of the board and a
secondary port on the upper right, see the drawing below. You must connect the primary port and the
secondary port is optional. The secondary antenna improves receive performance in certain
situations, so we recommend it for best results.

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 113

Antenna recommendations Antenna placement

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 114

Antenna placement
It is important to keep the antenna as far away from the XBee Cellular Modem and other metal
objects as possible. Often, small antennas are desirable, but at the cost of increasing size of dead
zones because of reduced range and efficiency.
We recommend that antennas do not touch each other, but the XBee Cellular Modem works if they do.
To optimize receive performance, orient the two antennas at right angles to each other.

RF exposure
If you are an integrating the into another product, you must include the following Caution statement
in OEM product manuals to alert users of FCC RF exposure compliance:

CAUTION! To satisfy FCC RF exposure requirements for mobile transmitting devices, a
separation distance of 25 cm or more should be maintained between the antenna of this
device and persons during device operation. To ensure compliance, operations at closer
than this distance are not recommended. The antenna used for this transmitter must
not be co-located in conjunction with any other antenna or transmitter.

Design recommendations

Power supply considerations 116
Add a capacitor to the RESET line 116
Heat considerations and testing 116
Heat sink guidelines 118
Add a fan to provide active cooling 119
Custom configuration: Create a new factory default 120
Clean shutdown 120
SIM cards 121

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 115

Design recommendations Power supply considerations

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 116

Power supply considerations
When considering a power supply, use the following design practices.

1. Power supply ripple should be less than 75 mV peak to peak.
2. The power supply should be capable of providing a minimum of 1.5 A at 3.3 V (5 W). Keep in

mind that operating at a lower voltage requires higher current capability from the power
supply to achieve the 5 W requirement.

3. Place sufficient bulk capacitance on the XBee VCC pin to maintain voltage above the minimum
specification during inrush current. Inrush current is about 2 A during initial power up of cellular
communications and wakeup from sleep mode.

4. Place smaller high frequency ceramic capacitors very close to the XBee Cellular Modem VCC
pin to decrease high frequency noise.

5. Use a wide power supply trace or power plane to ensure it can handle the peak current
requirements with minimal voltage drop. We recommend that the power supply and trace be
designed such that the voltage at the XBee VCC pin does not vary by more than 0.1 V between
light load (~0.5 W) and heavy load (~3 W).

Add a capacitor to the RESET line
In high EMI noise environments, we recommend adding a 10 nF ceramic capacitor very close to pin 5.

Heat considerations and testing
The XBee Cellular Modem may generate significant heat during sustained operation. In addition to
heavy data transfer, other factors that can contribute to heating include ambient temperature, air
flow around the device, and proximity to the nearest cellular tower (the XBee Cellular Modem must
transmit at a higher power level when communicating over long distances). Overheating can cause
device malfunction and potential damage. In order to avoid this it is important to consider the
application the XBee Cellular Modem is going into and mitigate heat issues if necessary.
We recommend that you perform thermal testing in your application to determine the resulting
steady state temperature of the XBee Cellular Modem. Use TP (Temperature) to estimate the device

Design recommendations Heat considerations and testing

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 117

temperature1. Convert the TP reading from hex format to decimal. We recommend that you confirm
the TP readings by attaching a thermocouple directly to the onboard microcontroller (if using a heat
sink place the thermocouple under the thermal gasket), and reading the temperature from the
thermocouple. The location of the microcontroller is shown below.

You also need to know the ambient temperature and the average current consumption during your
test. If you do not have a way to measure current consumption you can estimate it from the table in
the next section.
Use those results to approximate the maximum safe ambient temperature for the XBee Cellular
Modem, TMAX,amb, with the following equation:

Where:
TXBee is the steady state temperature of the XBee Cellular Modem that you measured during your test
(if using the TP command, be sure to convert from hex format to decimal).
Tamb,test is the ambient air temperature during your test.
IAVG,test is the average current measured during your test.
IMAX is the maximum current draw expected for your application during transmission (we recommend
you use 950 mA unless you have verified it will be lower).

1The TP reading may not be calibrated. To compensate for this you can determine an offset to use in the
equations above as follows: With the XBee Cellular Modem not powered, allow it to sit at room temperature for
15 - 20 minutes. Power the device and immediately read the TP command. Convert the TP reading from hex
format to decimal and subtract the result from the actual room temperature. Add this offset to to TXBee in your
numbers above.

Design recommendations Heat sink guidelines

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 118

Heat sink guidelines
Based on the results of your thermal testing you may find it is advisable or required to implement a
method of dissipating excess heat. This section explains how to employ a heat sink on top of the XBee
Cellular Modem.

Bolt-down style
A bolt-down style heat sink on top of the XBee Cellular Modem provides the best performance. An
example part number is Advanced Thermal Solutions ATS-PCBT1084/ATS-PCB1084. You must use an
electrically non-conductive thermal gasket on top of the XBee device under the area that will be
covered by the heat sink. A thermal gasket such as Gap Pad® 2500S20 is suitable for this purpose. We
recommend using a gasket with thickness of 0.080 in to ensure that components on top of the XBee
device do not tear through the material when pressure is applied to the heat sink.
Install the SIM card prior to placement of the heat sink. Position the thermal gasket and heat sink
assembly on the top of the device so that it covers the microcontroller and surrounding components.
You may cover the section shown inside the red box below; do not cover the U.FL connectors. When
attaching to the host PCB, tighten the mounting hardware until the thermal gasket is compressed
about 25%. Avoid overtightening. To prevent shorting, check that the surface of the heat sink does not
directly contact the XBee device.

Adhesive style heat sink
For applications where the size or mounting requirement of the bolt-down heat sink is undesirable,
you may alternatively employ an adhesive style heat sink. The heat sink should be no more than 8x8
mm in size (one option is the Assman WSW Components V2016B). Use a thermally conductive epoxy to
attach the heat sink directly to the microcontroller package, and to prevent shorting ensure that the
heat sink does not touch any other components.

Design recommendations Add a fan to provide active cooling

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 119

The following table provides a list of typical scenarios and the maximum ambient temperature at
which the XBee Cellular Modem can be safely operated under that condition. These are provided only
as guidelines as your results will vary based on application. We recommend that you perform sufficient
testing, as explained in Heat considerations and testing, to ensure that the XBee Cellular Modem does
not exceed temperature specifications.

Scenario

Average
current
consumption
(VCC = 3.3 V)

Example
application

Peak data
consumed
(MB/hr)

Maximum ambient temperature

No
heat
sink

Adhesive
heat sink

Bolt-
down
heat
sink

Bolt-
down
heat
sink
and
fan

Maximum
transmission
duty cycle

950 mA Running video
camera

500 to
2000

N/A 25 °C 49 °C 70 °C

50% duty
cycle

475 mA Running low
resolution
video camera

200 to 400 42 °C 55 °C 65 °C 75 °C

20% duty
cycle

200 mA Sending high
resolution
photo less
than once per
minute

50 to 150 64 °C 72 °C 74 °C 78 °C

Device awake,
limited
transmissions

170 mA Updating
traffic sign

1 to 10 66 °C 74 °C 75 °C 80 °C

Device
primarily
asleep, very
limited
transmissions

20 mA Small data
transmission/
receptions
which occur
once per hour

Less than
0.1

80 °C 80 °C 80 °C 80 °C

Add a fan to provide active cooling
Another option for heat mitigation is to add a fan to your system to provide active cooling. You can use
a fan instead of or in addition to a heat sink. The XBee Cellular Modem offers a fan control feature on
I/O pin DIO11 (pin 7). When the functionality is enabled, that line is pulled high to indicate when the fan
should be turned on. The line is pulled high when the device gets above 70 °C and the cellular
component is running, and turns off when the device drops below 65 °C.
To enable the functionality set P1 (DIO11/PWM1 Configuration) to 1. Note that the I/O pin is not
capable of driving a fan directly; you must implement a circuit to power the fan from a suitable power
source.

Design recommendations Custom configuration: Create a new factory default

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 120

Custom configuration: Create a new factory default
You can create a custom configuration that is used as a new factory default. This feature is useful if
you need, for example, to maintain certain settings for manufacturing or want to ensure a feature is
always enabled. When you perform a factory reset on the device using the RE command, the custom
configuration is set on the device rather than the original factory default settings.
For example, by default the baud rate is set to 9600. You can create a custom configuration where the
baud rate is set to 115200 by default. When you use the RE command to reset the device to the
factory defaults, the baud rate is set to the custom configuration (115200) rather than the original
factory default (9600).
The custom configuration is stored in non-volatile memory. You can continue to create and save
custom configurations until the device's memory runs out of space. If there is no space left to save a
configuration, XBee returns an error.
You can use the !C command to clear or overwrite a custom configuration at any time.

Set a custom configuration
1. Open XCTU on the device.
2. Enter Command mode.
3. Perform the following process for each configuration that you want to set as a factory default.

a. Issue an AT%F command. This command enables you to enter a custom configuration.
b. Issue the custom configuration command. For example: ATBD 7. This command sets the

default for the baud rate to 115200.

Clear all custom configurations on a device
After you have set configurations using the AT%F command, you can return all configurations to the
original factory defaults.

1. Open XCTU on the device.
2. Enter Command mode.
3. Issue AT!C.

Clean shutdown
Digi strongly recommends performing a clean shutdown procedure on your XBee cellular devices
before removing power from the devices. Performing a shutdown allows the module to unregister
from the cellular network and safely store operating parameters. Failure to shutdown properly has
the potential to result in delays resuming network operation and in some rare instances may result in
an unrecoverable module failure.
Use the following method to perform a clean shutdown.

SD (Shutdown) command
You should use the SD command to safely shut down a device before removing power. This is the
recommended method.
Issue the SD command. When the shut down process is complete, the device returns OK. After the
device responds OK, you can safely remove power from the device.
The device will return ERROR if any of the following actions are in progress:

Design recommendations SIM cards

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 121

n Over-the-air update of the cellular component
n Local update of the cellular component
n Over-the-air update of the XBee firmware.

In addition, if the radio can't be fully shut down within two minutes, the device returns ERROR.
You can verify the state of the device using the AI command. After you issue the SD command and a
response has been returned (either OK or ERROR), issue the AI command. If the shutdown was
successful, 2D is returned.

SIM cards
n For best performance, use a SIM card with gold-plated contacts.
n Because vibrations in your application environment may cause unexpected SIM card failures

due to fretting between the SIM card and the card holder, Digi strongly recommends that you
apply a thin layer of dielectric grease to the SIM contacts prior to installing the SIM cards.

Cellular connection process

Connecting 123
Data communication with remote servers (TCP/UDP) 123
Disconnecting 123

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 122

Cellular connection process Connecting

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 123

Connecting
In normal operations, the XBee Cellular Modem automatically attempts both a cellular network
connection and a data network connection on power-up. The sequence of these connections is as
follows:

Cellular network
1. The device powers on.
2. It looks for cellular towers.
3. It chooses a candidate tower with the strongest signal.
4. It negotiates a connection.
5. It completes cellular registration; the phone number and SMS are available.

Data network connection
1. The network enables the evolved packet system (EPS) bearer with an access point name

(APN). See AN (Access Point Name) if you have APN issues. You can use OA (Operating APN) to
query the APN value currently configured in the cellular component.

2. The device negotiates a data connection with the access point.
3. The device receives its IP configuration and address.
4. The AI (Association Indication) command now returns a 0 and the sockets become available.

Data communication with remote servers (TCP/UDP)
Once the data network connection is established, communication with remote servers can be
initiated in several ways.

n Transparent mode data sent to the serial port (see TD (Text Delimiter) and RO (Packetization
Timeout) for timing).

n API mode: Transmit (TX) Request: IPv4 - 0x20 received over the serial connection.
n Digi Remote Manager connectivity begins.

Data communication begins when:

1. A socket opens to the remote server.
2. Data is sent.

Data connectivity ends when:

1. The server closes the connection.
2. The TM timeout expires (see TM (IP Client Connection Timeout)).
3. The cellular network may also close the connection after a timeout set by the network

operator.

Disconnecting
When the XBee Cellular Modem is put into Airplane mode, deep sleep is requested, or ATSD (shutdown)
command is executed:

Cellular connection process Disconnecting

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 124

1. Sockets are closed, cleanly if possible.
2. The cellular connection is shut down.
3. The cellular component is powered off.

Note We recommend entering Airplane mode before resetting or rebooting the device to allow the
cellular module to detach from the network.

Modes

Select an operating mode 126
Transparent operating mode 127
API operating mode 127
Bypass operating mode (DEPRECATED) 127
Command mode 128
MicroPython mode 130

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 125

Modes Select an operating mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 126

Select an operating mode
The XBee Cellular Modem interfaces to a host device such as a microcontroller or computer through a
logic-level asynchronous serial port. It uses a UART for serial communication with those devices.
The XBee Cellular Modem supports three operating modes: Transparent operating mode,
API operating mode, and Bypass operating mode. The default mode is Transparent operating mode.
Use the AP (API Enable) command to select a different operating mode.
The following flowchart illustrates how the modes relate to each other.

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

Modes Transparent operating mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 127

Transparent operating mode
Devices operate in this mode by default. The device acts as a serial line replacement when it is in
Transparent operating mode. The device queues all serial data it receives through the DIN pin for RF
transmission. When a device receives RF data, it sends the data out through the DOUT pin. You can set
the configuration parameters using Command mode.
The IP (IP Protocol) command setting controls how Transparent operating mode works for the XBee
Cellular Modem.

Note Transparent operation is not available when using SPI.

API operating mode
API operating mode is an alternative to Transparent operating mode. API mode is a frame-based
protocol that allows you to direct data on a packet basis. The device communicates UART or SPI data
in packets, also known as API frames. This mode allows for structured communications with
computers and microcontrollers.
The advantages of API operating mode include:

n It is easier to send information to multiple destinations
n The host receives the source address for each received data frame
n You can change parameters without entering Command mode

Bypass operating mode (DEPRECATED)

WARNING! Bypass mode is now deprecated and is not recommended for new designs.
Direct access to the cellular module is not recommended or supported on the XBee Cellular
CAT 1 Verizon model.

CAUTION! Bypass operating mode is an alternative to Transparent and API modes for
advanced users with special configuration needs. Changes made in this mode might change
or disable the device and we do not recommended it for most users.

In Bypass mode, the device acts as a serial line replacement to the cellular component. In this mode,
the XBee Cellular Modem exposes all control of the cellular component's AT port through the UART. If
you use this mode, you must setup the cellular modem directly to establish connectivity. The modem
does not automatically connect to the network.

Note The cellular component can become unresponsive in Bypass mode. See Unresponsive cellular
component in Bypass mode for help in this situation.

When Bypass mode is active, most of the XBee Cellular Modem's AT commands do not work. For
example, IM (IMEI) may never return a value, and DB does not update. In this configuration, the
firmware does not test communication with the cellular component (which it does by sending AT
commands). This is useful in case you have reconfigured the cellular component in a way that makes it
incompatible with the firmware. Bypass operating mode exists for users who wish to communicate
directly with the cellular component settings and do not intend to use XBee Cellular Modem software
features such as API mode.

Modes Command mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 128

Command mode is available while in Bypass mode; see Enter Command mode for instructions.

Enter Bypass operating mode
To configure a device for Bypass operating mode:

1. Set the AP (API Enable) parameter value to 5.
2. Send WR (Write) to write the changes.
3. Send FR (Force Reset) to reboot the device.
4. After rebooting, enter Command mode and verify that Bypass operating mode is active by

querying AI (Association Indication) and confirming that it returns a value of 0x2F.

It may take a moment for Bypass operating mode to become active.

Leave Bypass operating mode
To configure a device to leave Bypass operating mode:

1. Set AP (API Enable) to something other than 5.
2. Send WR (Write) to write the changes.
3. Send FR (Force Reset) to reboot the device.
4. After rebooting, enter Command mode and verify that Bypass operating mode is not active by

querying AI (Association Indication) and confirming that it returns a value other than 0x2F.

Restore cellular settings to default in Bypass operating mode
Send AT&F1 to reset the cellular component to its factory profile.

Command mode
Command mode is a state in which the firmware interprets incoming characters as commands. It
allows you to modify the device’s configuration using parameters you can set using AT
commands. When you want to read or set any parameter of the XBee Cellular Modem using this mode,
you have to send an AT command. Every AT command starts with the letters AT followed by the two
characters that identify the command and then by some optional configuration values.
The operating modes of the XBee Cellular Modem are controlled by the AP (API Enable) setting,
but Command mode is always available as a mode the device can enter while configured for any of the
operating modes.
Command mode is available on the UART interface for all operating modes. You cannot use the SPI
interface to enter Command mode.

Enter Command mode
To get a device to switch into Command mode, you must issue the following sequence: +++ within one
second. There must be at least one second preceding and following the +++ sequence. Both the
command character (CC) and the silence before and after the sequence (GT) are configurable. When
the entrance criteria are met the device responds with OK\r on UART signifying that it has entered
Command mode successfully and is ready to start processing AT commands.
If configured to operate in Transparent operating mode, when entering Command mode the XBee
Cellular Modem knows to stop sending data and start accepting commands locally.

Modes Command mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 129

Note Do not press Return or Enter after typing +++ because it interrupts the guard time silence and
prevents you from entering Command mode.

When the device is in Command mode, it listens for user input and is able to receive AT commands on
the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out of
Command mode and returns to the previous operating mode. You can force the device to leave
Command mode by sending CN (Exit Command mode).
You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Sequence Character), CT (Command
Mode Timeout) and GT (Guard Times).

Troubleshooting
Failure to enter Command mode is often due to baud rate mismatch. Ensure that the baud rate of the
connection matches the baud rate of the device. By default, BD (Baud Rate) = 3 (9600 b/s).
There are two alternative ways to enter Command mode:

n A serial break for six seconds enters Command mode. You can issue the "break" command
from a serial console, it is often a button or menu item.

n Asserting DIN (serial break) upon power up or reset enters Command mode. XCTU guides you
through a reset and automatically issues the break when needed.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the UART
to indicate that Command mode is active. When Command mode exits, the device returns to normal
operation at the baud rate that BD is set to.

Send AT commands
Once the device enters Command mode, use the syntax in the following figure to send AT commands.
Every AT command starts with the letters AT, which stands for "attention." The AT is followed by two
characters that indicate which command is being issued, then by some optional configuration values.
To read a parameter value stored in the device’s register, omit the parameter field.

Multiple AT commands
You can send multiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.
The preceding example changes the NI (Node Identifier) to My XBee and makes the setting active
through AC (Apply Changes).

Parameter format
Refer to the list of AT commands for the format of individual AT command parameters. Valid formats
for hexidecimal values include with or without a leading 0x for example FFFF or 0xFFFF.

Modes MicroPython mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 130

Response to AT commands
When using AT commands to set parameters the XBee Cellular Modem responds with OK<cr> if
successful and ERROR<cr> if not.
For devices with a file system:
ATAP1<cr>
OK<cr>
When reading parameters, the device returns the current parameter value instead of an OK message.
ATAP<cr>
1<cr>

Apply command changes
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).
2. Send WR (Write).

or:
3. Exit Command mode.

Make command changes permanent
Send a WR (Write) command to save the changes. WR writes parameter values to non-volatile memory
so that parameter modifications persist through subsequent resets.
Send as RE command to wipe settings saved using WR back to their factory defaults.

Note You still have to use WR to save the changes enacted with RE.

Exit Command mode
1. Send CN (Exit Command mode) followed by a carriage return.

or:
2. If the device does not receive any valid AT commands within the time specified by CT

(Command Mode Timeout), it returns to Transparent or API mode. The default Command mode
timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each configurable
parameter, see AT commands.

MicroPython mode
MicroPython mode (AP = 4) allows you to communicate with the XBee Cellular Modem using the
MicroPython programming language. You can use the MicroPython Terminal tool in XCTU to
communicate with the MicroPython stack of the XBee Cellular Modem through the serial interface.
MicroPython mode connects the primary serial port to the stdin/stdout interface on MicroPython,
which is either the REPL or code launched at startup.

Modes MicroPython mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 131

When code runs in MicroPython with AP set to a value other than 4, stdout goes to the bit bucket and
there is no input to read on stdin.

Sleep modes

About sleep modes 133
Normal mode 133
Pin sleep mode 133
Cyclic sleep mode 133
Cyclic sleep with pin wake up mode 133
Airplane mode 133
Connected sleep mode 133
The sleep timer 134
MicroPython sleep behavior 134

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 132

Sleep modes About sleep modes

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 133

About sleep modes
A number of low-power modes exist to enable devices to operate for extended periods of time on
battery power. Use SM (Sleep Mode) to enable these sleep modes.

Normal mode
Set SM to 0 to enter Normal mode.
Normal mode is the default sleep mode. If a device is in this mode, it does not sleep and is always
awake.
Devices in Normal mode are typically mains powered.

Pin sleep mode
Set SM to 1 to enter pin sleep mode.
Pin sleep allows the device to sleep and wake according to the state of the SLEEP_RQ pin (pin 9).
When you assert SLEEP_RQ (high), the device finishes any transmit or receive operations, closes any
active connection, and enters a low-power state.
When you de-assert SLEEP_RQ (low), the device wakes from pin sleep.

Cyclic sleep mode
Set SM to 4 to enter Cyclic sleep mode.
Cyclic sleep allows the device to sleep for a specific time and wake for a short time to poll.
If you use the D7 command to enable hardware flow control, the CTS pin asserts (low) when the
device wakes and can receive serial data, and de-asserts (high) when the device sleeps.

Cyclic sleep with pin wake up mode
Set SM to 5 to enter Cyclic sleep with pin wake up mode.
This mode is a slight variation on Cyclic sleep mode (SM = 4) that allows you to wake a device
prematurely by de-asserting the SLEEP_RQ pin (pin 9).
In this mode, you can wake the device after the sleep period expires, or if a high-to-low transition
occurs on the SLEEP_RQ pin.

Airplane mode
While not technically a sleep mode, Airplane mode is another way of saving power. When set, the
cellular component of the XBee Cellular Modem is fully turned off and no access to the cellular
network is performed or possible. Use AM (Airplane Mode) to configure this mode.

Connected sleep mode
XBee Cellular Modem hardware part number XBC-V1-UT-xxx can enter Connected sleep mode.
Only some hardware versions are compatible with this mode. To see if the module is capable of using
connected sleep mode, read the HI (Hardware Identity) command. If the value returned is 3 then the
hardware is compatible and connected sleep mode is available.

Sleep modes The sleep timer

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 134

Set bit 0 of SO (Sleep Options) for connected sleep. When bit 0 is set and the XBee Cellular Modem
goes to sleep, instead of the cellular component shutting down, it enters a lower power consumption
mode that maintains registration with the cellular network. This allows significantly faster resumption
of communications when coming out of sleep at the cost of additional power used.
Connected sleep mode draws 9 mA during sleep and 11 mA average over time, which includes
periodically waking up to maintain connection.

The sleep timer
The sleep timer starts when the device wakes and resets on re-configuration. When the sleep timer
expires the device returns to sleep.

MicroPython sleep behavior
When the XBee Cellular Modem enters Deep Sleep mode, any MicroPython code currently executing is
suspended until the device comes out of sleep. When the XBee Cellular Modem comes out of sleep
mode, MicroPython execution continues where it left off.
Upon entering deep sleep mode, the XBee Cellular Modem closes any active TCP/UDP connections
and turns off the cellular component. As a result, any sockets that were opened in MicroPython prior
to sleep report as no longer being connected. This behavior appears the same as a typical socket
disconnection event will:

n socket.send raises OSError: ENOTCONN
n socket.sendto raises OSError: ENOTCONN
n socket.recv returns the empty string, the traditional end-of-file return value
n socket.recvfrom returns an empty message, for example:

(b'', (<address from connect()>, <port from connect()>))
The underlying UDP socket resources have been released at this point.

Serial communication

Serial interface 136
Serial data 136
UART data flow 136
Serial buffers 137
CTS flow control 137
RTS flow control 137

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 135

Serial communication Serial interface

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 136

Serial interface
The XBee Cellular Modem interfaces to a host device through a serial port. The device's serial port can
communicate:

n Through a logic and voltage compatible universal asynchronous receiver/transmitter (UART).
n Through a level translator to any serial device, for example, through an RS-232 or USB

interface board.
n Through a serial peripheral interface (SPI) port.

Serial data
A device sends data to the XBee Cellular Modem's UART through pin 3 DIN as an asynchronous serial
signal. When the device is not transmitting data, the signals should idle high.
For serial communication to occur, you must configure the UART of both devices (the microcontroller
and the XBee Cellular Modem) with compatible settings for the baud rate, parity, start bits, stop bits,
and data bits.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet 0x1F (decimal number 31) as transmitted through the device.

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD, NB,
and SB commands respectively. For more information, see Serial interfacing commands.
In the rare case that a device has been configured with the UART disabled, you can recover the device
to UART operation by holding DIN low at reset time. DIN forces a default configuration on the UART at
9600 baud and it brings the device up in Command mode on the UART port. You can then send the
appropriate commands to the device to configure it for UART operation. If those parameters are
written, the device comes up with the UART enabled on the next reset.

UART data flow
Devices that have a UART interface connect directly to the pins of the XBee Cellular Modem as shown
in the following figure. The figure shows system data flow in a UART-interfaced environment. Low-
asserted signals have a horizontal line over the signal name.

Serial communication Serial buffers

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 137

Serial buffers
The XBee Cellular Modem maintains internal buffers to collect serial and RF data that it receives. The
serial receive buffer collects incoming serial characters and holds them until the device can process
them. The serial transmit buffer collects the data it receives via the RF link until it transmits that data
out the serial or SPI port.

CTS flow control
We strongly encourage you to use flow control with the XBee Cellular Modem to prevent buffer
overruns.
CTS flow control is enabled by default; you can disable it with D7 (DIO7/CTS). When the serial receive
buffer fills with the number of bytes specified by FT (Flow Control Threshold), the device de-asserts
CTS (sets it high) to signal the host device to stop sending serial data. The device re-asserts CTS when
less than FT-16 bytes are in the UART receive buffer.

Note Serial flow control is not possible when using the SPI port.

RTS flow control
If you set D6 (DIO6/RTS) to enable RTS flow control, the device does not send data in the serial
transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert RTS for
long periods of time or the serial transmit buffer will fill.

SPI operation

SPI communications 139
Full duplex operation 139
Low power operation 140
Select the SPI port 141
Force UART operation 142
Data format 142

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 138

SPI operation SPI communications

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 139

SPI communications
The XBee Cellular Modem supports SPI communications in slave mode. Slave mode receives the clock
signal and data from the master and returns data to the master. The following table shows the
signals that the SPI port uses on the device.

Signal Function

SPI_MOSI
(Master Out, Slave In)

Inputs serial data from the master

SPI_MISO (Master
In, Slave Out)

Outputs serial data to the master

SPI_SCLK (Serial Clock) Clocks data transfers on MOSI and MISO

SPI_SSEL (Slave Select) Enables serial communication with the slave

SPI_ATTN (Attention) Alerts the master that slave has data queued to send. The XBee Cellular
Modem asserts this pin as soon as data is available to send to the SPI
master and it remains asserted until the SPI master has clocked out all
available data.

In this mode:

n SPI clock rates up to 6 MHz are possible.
n Data is most significant bit (MSB) first; bit 7 is the first bit of a byte sent over the interface.
n Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data is

sampled on the clock’s leading edge).
n The SPI port only supports API Mode (AP = 1).

The following diagram shows the frame format mode 0 for SPI communications.

SPI mode is chip to chip communication. We do not supply a SPI communication option on the device
development evaluation boards.

Full duplex operation
The specification for SPI includes the four signals SPI_MISO, SPI_MOSI, SPI_CLK, and SPI_SSEL. Using
these four signals, the SPI master cannot know when the slave needs to send and the SPI slave
cannot transmit unless enabled by the master. For this reason, the SPI_ATTN signal is available in the

SPI operation Low power operation

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 140

design. This allows the SPI slave to alert the SPI master that it has data to send. In turn, the SPI
master is expected to assert SPI_SSEL and start SPI_CLK, unless these signals are already asserted
and active respectively. This, in turn, allows the XBee Cellular Modem SPI slave to send data to the
master.
SPI data is latched by the master and slave using the SPI_CLK signal. When data is being transferred
the MISO and MOSI signals change between each clock. If data is not available then these signals will
not change and will be either 0 or 1. This results in receiving either a repetitive 0 or 0xFF. The means
of determining whether or not received data is valid is by packetizing the data with API packets,
without escaping. Valid data to and from the XBee Cellular Modem is delimited by 0x7E, a length, the
payload, and finally a checksum byte. Everything else in both directions should be ignored. The bytes
received between frames will be either 0xff or 0x00. This allows the SPI master to scan for a 0x7E
delimiter between frames.
SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master is sending data to the slave and the slave has valid data to send in
the middle of receiving data from the master, it allows a true full duplex operation where data is valid
in both directions for a period of time. During this time, the master and slave must simultaneously
transmit valid data at the clock speed so that no invalid bytes appear within an API frame, causing the
whole frame to be discarded.
An example follows to more fully illustrate the SPI interface during the time valid data is being sent in
both directions. First, the master asserts SPI_SSEL and starts SPI_CLK to send a frame to the slave.
Initially, the slave does not have valid data to send the master. However, while it is still receiving data
from the master, it has its own data to send. Therefore, it asserts SPI_ATTN low. Seeing that SPI_
SSEL is already asserted and that SPI_CLK is active, it immediately begins sending valid data, even
while it is receiving valid data from the master. In this example, the master finishes its valid data
before the slave does. The master will have two indications of valid data: The SPI_ATTN line is
asserted and the API frame length is not yet expired. For both of these reasons, the master should
keep SPI_SSEL asserted and should keep SPI_CLK toggling in order to receive the end of the frame
from the slave, even though these signals were originally turned on by the master to send data.
During the time that the SPI master is sending invalid data to the SPI slave, it is important no 0x7E is
included in that invalid data because that would trigger the SPI slave to start receiving another valid
frame.
The following figure illustrates the SPI interface while valid data is being sent in both directions.

Low power operation
Sleep modes generally work the same on SPI as they do on UART. However, due to the addition of SPI
mode, there is an option of another sleep pin, as described below.

SPI operation Select the SPI port

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 141

By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes the
device and puts it to sleep. This applies to both the UART and SPI serial interfaces.
If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a peripheral, then
pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting SPI_SSEL (pin 17) by
driving it low either wakes the device or keeps it awake. Negating SPI_SSEL by driving it high puts the
device to sleep.
Using SPI_SSEL to control sleep and to indicate that the SPI master has selected a particular slave
device has the advantage of requiring one less physical pin connection to implement pin sleep on SPI.
It has the disadvantage of putting the device to sleep whenever the SPI master negates SPI_SSEL
(meaning time is lost waiting for the device to wake), even if that was not the intent.
If the user has full control of SPI_SSEL so that it can control pin sleep, whether or not data needs to be
transmitted, then sharing the pin may be a good option in order to make the SLEEP_REQUEST pin
available for another purpose.
If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks to
the other slave, but this is acceptable in most cases.
If you do not configure either pin as a peripheral, then the device stays awake, being unable to sleep in
SM1 mode.

Select the SPI port
To force SPI mode, hold DOUT/DIO13 pin 2 low while resetting the device until SPI_ATTN asserts. This
causes the device to disable the UART and go straight into SPI communication mode. Once
configuration is complete, the device queues a modem status frame to the SPI port, which causes the
SPI_ATTN line to assert. The host can use this to determine that the SPI port is configured properly.
This method forces the configuration to provide full SPI support for the following parameters:

n D1 (This parameter will only be changed if it is at a default of zero when the method is
invoked.)

n D2
n D3
n D4
n P2

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash. After a reset, parameters that were forced and then written to flash
become the mode of operation.
If the UART is disabled and the SPI is enabled in the written configuration, then the device comes up in
SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are enabled at the time
of reset, then output goes to the UART until the host sends the first input. If that first input comes on
the SPI port, then all subsequent output goes to the SPI port and the UART is disabled. If the first
input comes on the UART, then all subsequent output goes to the UART and the SPI is disabled.
Once you select a serial port (UART or SPI), all subsequent output goes to that port, even if you apply a
new configuration. The only way to switch the selected serial port is to reset the device. On surface-
mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode on the SMT
devices, assert the SPI_SSEL (pin 17) low after reset and before any UART data is input.
When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the output
pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin has to be
asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A rising edge

SPI operation Force UART operation

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 142

on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device can drive it, if so
desired.
If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in API mode 1 format, as described in
Operate in API mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the SPI
slave port, you can recover the device to UART operation by holding DIN / CONFIG low at reset time.
DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up the device in
Command mode on the UART port. You can then send the appropriate commands to the device to
configure it for UART operation. If you write those parameters, the device comes up with the UART
enabled on the next reset.

Data format
SPI only operates in API mode 1. The XBee Cellular Modem does not support Transparent mode or API
mode 2 (which escapes control characters). This means that the AP configuration only applies to the
UART, and the device ignores it while using SPI. The reason for this operation choice is that SPI is full
duplex. If data flows in one direction, it flows in the other. Since it is not always possible to have valid
data flowing in both directions at the same time, the receiver must have a way to parse out the valid
data and to ignore the invalid data.
The XBee Cellular Modem sends 0xFF when there is no data to send to the host.

File system

For detailed information about using MicroPython on the XBee Cellular Modem refer to the Digi
MicroPython Programming Guide.

Overview of the file system 144
XCTU interface 145
Encrypt files 145

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 143

http://www.digi.com/resources/documentation/Digidocs/90002219/
http://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 144

Overview of the file system
XBee Cellular Modem firmware versions ending in 0B (for example, 1130B, 100B, 3100B) and later
include support for storing files on an internal 1 MB SPI flash.

CAUTION! You need to format the file system if upgrading a device that originally shipped
with older firmware. You can use XCTU, AT commands or MicroPython for that initial format
or to erase existing content at any time.

Note To use XCTU with file system, you need XCTU 6.4.0 or newer.

See ATFS FORMAT confirm and ensure that the format is complete.

Directory structure
The SPI flash appears in the file system as /flash, the only entry at the root level of the file system. It
has a lib directory intended for MicroPython modules and a cert directory for files used for TLS
sockets.

Paths
The XBee Cellular Modem stores all of its files in the top-level directory /flash. On startup, the ATFS
commands and MicroPython each use that as their current working directory. When specifying the
path to a file or directory, it is interpreted as follows:

n Paths starting with a forward slash are "absolute" and must start with /flash to be valid.
n All other paths are relative to the current working directory.
n The directory .. refers to the parent directory, so an operation on ../filename.txt that takes

place in the directory /flash/test accesses the file /flash/filename.txt.
n The directory . refers to the current directory, so the command ATFS ls . lists files in the

current directory.
n Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TxT all refer to the same file.
n File and directory names are limited to 64 characters, and can only contain letters, numbers,

periods, dashes and underscores. A period at the end of the name is ignored.
n The full, absolute path to a file or directory is limited to 255 characters.

Secure files
The file system includes support for secure files with the following properties:

n Created via the ATFS XPUT command or in MicroPython using a mode of * with the open()
method.

n Unable to download via the ATFS GET command or MicroPython's open() method.
n SHA256 hash of file contents available from ATFS HASH command (to compare with a local

copy of a file).
n Encrypted on the SPI flash.
n MicroPython can execute code in secure files.
n Sockets can use secure files when creating TLS connections.

File system XCTU interface

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 145

XCTU interface
XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can upload
files to and download files from the device, in addition to renaming and deleting existing files and
directories. See the File System manager tool section of the XCTU User Guide for details of its
functionality.

Encrypt files
You can encrypt files on the file system. This provides two things:

1. Protection of the client private key for TLS authentication while it is stored on the XBee
Cellular Modem.

2. Protection for user's MicroPython applications.

Use ATFS XPUT filename to place encrypted files on the file system. The XPUT operation is otherwise
identical to the PUT operation. Files placed in this way are indicated with a pound sign (#) following
the filename. The XBee Cellular Modem does not allow an encrypted file to be read by normal use so it:

1. Cannot be retrieved with the GET operation.
2. Cannot be opened and read in MicroPython applications.
3. Cannot be created by a MicroPython application.

When ATFS HASH filename is run with the filename of an encrypted file, it reports the SHA256 hash of
the file contents. In this way you can validate that the correct file has been placed on the XBee
Cellular Modem.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

SMS behaviors

SMS encoding
The XBee Cellular Modem transmits SMS messages using the standard GSM 03.38 character set.1
Because this character set only provides 7 bits of space per character, the XBee Cellular Modem
ignores the most significant bit of each octet in an SMS transmission payload.
The device converts incoming SMS messages to ASCII. Characters that cannot be represented in
ASCII are replaced with a space (' ', or 0x20 in hex). This includes emoji and other special characters.

1Also referred to as the GSM 7-bit alphabet.

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 146

https://en.wikipedia.org/wiki/GSM_03.38

Socket behavior

Supported sockets 148
Best practices when using sockets 148
Socket timeouts 148
Socket limits in API mode 148
UDP datagram size limits 149
Enable incoming TCP connections 149
API mode behavior for outgoing TCP and TLS connections 149
API mode behavior for outgoing UDP data 150
API mode behavior for incoming TCP connections 150
API mode behavior for incoming UDP data 151
Transparent mode behavior for outgoing TCP and TLS connections 151
Transparent mode behavior for outgoing UDP data 151
Transparent mode behavior for incoming TCP connections 152
Transparent mode behavior for incoming UDP connections 152

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 147

Socket behavior Supported sockets

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 148

Supported sockets
The XBee Cellular Modem supports the following number of sockets:

n 10 maximum: some combination of 6 TCP, 6 UDP, 6 TLS.1

Best practices when using sockets

Sockets and Remote Manager
If you use Remote Manager to remotely communicate with and configure your XBee Cellular device,
you must leave at least two sockets available in the system: one UDP socket (for periodic low-data-
usage check-ins), and one TCP/TLS socket (to be used when a full connection is needed).
If your application allocates so many sockets that Remote Manager functionality in the firmware
cannot get the sockets that it requires, Remote Manager functionality will be prevented from working
until sockets become available.
For example, each call to socket.socket() in MicroPython will allocate a socket, and this socket will
remain allocated to MicroPython until the socket's close method is called, or the MicroPython REPL is
restarted using Ctrl-D.
See Supported sockets for more information on the total number of sockets supported by the device.

Sockets and API mode
When using API mode to transmit TCP/TLS data to a remote destination (using the 0x20 or 0x23 API
frames), sending a large amount of data as a single API frame is preferable to multiple smaller API
frames. Using a single large API frame allows the XBee to transmit the data using fewer operations
than transmitting multiple pieces of data in sequence, which improves overall throughput.
Additionally, one API frame consumes less dynamic memory in the system than multiple smaller API
frames, which means there will be more memory available to process incoming IP data as well as
subsequent API frames sent into the XBee Cellular device.

Socket timeouts
The XBee Cellular Modem implicitly opens the socket any time there is data to be sent, and closes it
according to the timeout settings. The TM (IP Client Connection Timeout) command controls the
timeout settings.

Socket limits in API mode
In API mode there are a fixed number of sockets available; see Supported sockets. When a Transmit
(TX) Request: IPv4 - 0x20 frame is sent to the XBee Smart Modem for a new destination, it creates a
new socket. The exception to this is when using the UDP protocol with the C0 source port, which
allows unlimited destinations on the socket created by C0 (Source Port). If no more sockets are
available, the device sends back a Transmit (TX) Status - 0x89 frame with a Resource Error. The
Resource Error resolves when an existing socket is closed. An existing socket may be closed when the
socket times out (see TM (IP Client Connection Timeout) and TS (IP Server Connection Timeout)) or
when the socket is closed via a TX request with the CLOSE flag set.

11 UDP socket is always reserved for DNS, so subtract 1 socket from the values above.

Socket behavior UDP datagram size limits

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 149

In API mode each socket has a maximum number of pending Transmit (TX) Requests allowed. When a
Transmit (TX) Request: IPv4 - 0x20 frame is sent to the XBee Smart Modem for an existing destination,
it sends that request using the socket for that destination. If the number of pending Transmit (TX)
Requests would be exceeded for the socket, the device sends back a Transmit (TX) Status - 0x89
frame with a Resource Error indicating that the device is not able to send the request and should retry
again later. The Resource Error resolves when a Transmit (TX) Request that is pending on the socket
is transmitted; this is indicated by the Transmit (TX) Status frame for the request.

UDP datagram size limits
The maximum supported size for UDP datagrams either transmitted from or received by the XBee is
as follows:

Max supported size

Transmitted from 1500

Received by 1500

Enable incoming TCP connections
TCP establishes virtual connections between the XBee Cellular Modem and other devices. You can
enable the XBee Cellular Modem to listen for incoming TCP connections. Listen means waiting for a
connection request from any remote TCP and port.
The following devices support incoming TCP connections:

n Part number: XBC-V1-UT-001 (Digi XBee Cellular Verizon LTE Cat 1)
n Part number: XBC-M1-UT-001 (Digi XBee Cellular AT&T LTE Cat 1)

The XBee Cellular Modem only supports incoming TCP and UDP connections as configured in IP (IP
Protocol), TLS is not supported.

Enable incoming connections in XCTU

1. Set AP (API Enable) to Transparent Mode [0] or API Mode. You can use either API mode with
escapes or without escapes.

2. Set IP to TCP [1] or UDP [0].
3. Set C0 (Source Port) to the value of the TCP port that the device listens on.

4. Click the Write button .

Enable incoming connections in MicroPython
When you enable incoming connections in MicroPython (set AP (API Enable) to MicroPython REPL [4]),
note that the port and protocol are specified in the MicroPython code. No extra steps are needed.

API mode behavior for outgoing TCP and TLS connections
To initiate an outgoing TCP or TLS connection to a remote host, send a Transmit (TX) Request: IPv4 -
0x20 frame to the XBee Cellular Modem's serial port specifying the destination address and
destination port for the remote host; the data is optional and the source port is 0.

Socket behavior API mode behavior for outgoing UDP data

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 150

If the connection is disconnected at any time, send a Transmit TX Request frame to trigger a new
connection attempt.
To send data over this connection use the Transmit (TX) Request: IPv4 - 0x20.
The device sends a Transmit (TX) Status - 0x89 frame in reply to the Transmit TX Request indicating
the status of the request. A status of 0 indicates the connection and/or data was successful, a value of
0x32 indicates a temporary Resource Error (see Socket limits in API mode), and other values indicates
a failure.
Any data received on the connection is sent out the XBee Cellular Modem's serial port as a Receive RX
frame.
A connection is closed when:

n The remote end closes the connection.
n No data is sent or received for longer than the socket timeout set by TM (IP Client Connection

Timeout).
n A Transmit TX Request is sent with the CLOSE flag set.

API mode behavior for outgoing UDP data
To send a UDP datagram to a remote host, send a Transmit (TX) Request: IPv4 - 0x20 frame to the
XBee Cellular Modem's serial port specifying the destination address and destination port of the
remote host. If you use a source port of 0, the device creates a new socket for the purpose of sending
to the remote host. The XBee Cellular Modem supports a finite number of sockets, so if you need to
send to many destinations:

1. The socket must be closed after use.

or

2. You must use the socket specified by the C0 (Source Port) setting.

To use the socket specified by the C0 setting, in the Transmit TX request frame use a source port that
matches the value configured for the C0 setting.
The device sends a Transmit (TX) Status - 0x89 frame in reply to the Transmit TX Request to indicate
the status of the request. A status of 0 indicates the connection and/or data was successful, a value of
0x32 indicates a temporary Resource Error (see Socket limits in API mode), and other values indicates
a failure.
Any data received on the UDP socket is sent out the XBee Cellular Modem's serial port as a Receive
(RX) Packet: IPv4 - 0xB0 frame.
A UDP socket is closed when:

n No data has been sent or received for longer than the socket timeout set by TM (IP Client
Connection Timeout).

n A transmit TX Request is sent with the CLOSE flag set.

API mode behavior for incoming TCP connections
For incoming connections and data in API mode, the XBee Cellular Modem uses the C0 (Source Port)
and IP (IP Protocol) settings to specify the listening port and protocol used. The XBee Cellular Modem
does not currently support the TLS protocol for incoming connections.

Socket behavior API mode behavior for incoming UDP data

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 151

When the IP setting is TCP the XBee Cellular Modem allows multiple incoming TCP connections on the
port specified by the C0 setting. Any data received on the connection is sent out the XBee Cellular
Modem's serial port as a Receive (RX) Packet: IPv4 - 0xB0 frame.
To send data from the device over the connection, use the Transmit (TX) Request: IPv4 - 0x20 frame
with the corresponding address fields received from the Receive RX frame. In other words:

n Take the source address, source port, and destination port fields from the Receive (RX) frame
and use those respectively as:

n The destination address, destination port, and source port fields for the Transmit (TX) Request
frame.

A connection is closed when:

n The remote end closes the connection.
n No data has been sent or received for longer than the socket timeout set by TS (IP Server

Connection Timeout).
n A Transmit (TX) Request frame is sent with the CLOSE flag set.

API mode behavior for incoming UDP data
When the IP (IP Protocol) setting is UDP, any data sent from a remote host to the XBee Cellular
Modem's network port specified by the C0 (Source Port) setting is sent out the XBee Cellular Modem's
serial port as a Receive (RX) Packet: IPv4 - 0xB0 frame.
To send data from the XBee Cellular Modem to the remote destination, use the Transmit (TX)
Request: IPv4 - 0x20 frame with the corresponding address fields received from the Receive RX frame.
In other words take the source address, source port, and destination port fields from the Receive (RX)
frame and use those respectively as the destination address, destination port, and source port fields
for the Transmit (TX) Request frame.

Transparent mode behavior for outgoing TCP and TLS
connections

For Transparent mode, the IP (IP Protocol) setting specifies the protocol and the DL (Destination
Address) and DE (Destination port) settings specify the destination address used for outgoing data
(UDP) and outgoing connections (TCP and TLS).
To initiate an outgoing TCP or TLS connection to a remote host, send data to the XBee Cellular
Modem's serial port. If CI (Protocol/Connection Indication) reports a value of 0, then the connection
was successfully established, otherwise the value of CI indicates why the connection attempt failed.
Any data received over the connection is sent out the XBee Cellular Modem's serial port.
A connection is closed when:

n The remote end closes the connection.
n No data has been sent or received for longer than the socket timeout set by TM (IP Client

Connection Timeout).
n You make and apply a change to the IP, DL, or DE.

Transparent mode behavior for outgoing UDP data
To send outgoing UDP data to a remote host, send data to the XBee Cellular Modem's serial port. If CI
(Protocol/Connection Indication) reports a value of 0, the data was successfully sent; otherwise, the

Socket behavior Transparent mode behavior for incoming TCP connections

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 152

value of CI indicates why the data failed to be sent.
The RO (Packetization Timeout) setting provides some control in how the serial data gets packetized
before being sent to the remote host. The first send opens up a UDP socket used to send and receive
data. Any data received by this socket is sent out the XBee Cellular Modem's serial port.

Note Set RO to FF for realtime typing by humans. Also, see TD (Text Delimiter).

Transparent mode behavior for incoming TCP connections
The C0 (Source Port) and IP (IP Protocol) settings specify the listening port and protocol used for
incoming connections (TCP) and incoming data (UDP) in Transparent mode. TLS is not currently
supported for incoming connections.
When the IP setting is TCP and there is no existing connection to or from the XBee Cellular Modem,
the device accepts one incoming connection. Any data received on the connection is sent out the XBee
Cellular Modem's serial port. Any data sent to the XBee Cellular Modem's serial port is sent over the
connection. If the connection is disconnected, it discards pending data.

Transparent mode behavior for incoming UDP connections
When the IP (IP Protocol) setting is UDP any data sent from a remote host to the XBee Cellular
Modem's network port specified by C0 (Source Port) is sent out the XBee Cellular Modem's serial port.
Any data sent to the XBee Cellular Modem's serial port is sent to the network destination specified by
the DL (Destination Address) and DE (Destination port) settings. If the DL and DE settings are
unspecified or invalid, the XBee Cellular Modem discards data sent to the serial port.

Extended Socket frames

The XBee Cellular product line includes a set of Extended Socket frames. You can use these frames in
applications where the existing frames (Transmit Request (0x20), TLS Transmit (0x23) and Receive
(0xB0)) limit the possibilities for an application.
You can use Extended Socket frames to do the following:

n Multiple simultaneous connections can be made to the same port on the same host. For
example, you can overlap simultaneous HTTP requests.

n Immediate unsolicited notification of changes in socket status. This allows an application to
react to a server-side socket closure rather than relying on an implicit connection to be re-
established for continuing communication.

n A generalized mechanism for per-socket option selection. Currently used for TLS profile
selection. Previously this required a unique frame, as options are added, this allows
combinations of choices.

n Allow DNS look up during the connection process rather than a separate step.

In addition, for diagnostic purposes, you can use the Socket Info (SI) AT command to retrieve
information regarding all open sockets currently active in the system. This can be queried during
development or used by an application to confirm or refresh information during execution.

Note Sockets opened with the Extended Socket frames cannot be used with the legacy frames
(Transmit Request (0x20), TLS Transmit (0x23) and Receive (0xB0)), nor vice versa.

For a list of the socket frames, see Available Extended Socket frames.

Examples
In the examples below the Frame IDs in all frames are set to 1 for simplicity. Socket IDs in all frames
after the Socket Create are hard-coded to 0 as well. If you wish to use the example repeatedly the
XBee should be rebooted between attempts.
We recommend the use of the XCTU frame generator for experimentation with frames during
development. Paste the provided frame content directly into the Add API frame to list window in
XCTU to follow along manually.
Extended Socket example: Single HTTP Connection
Extended Socket example: UDP
Extended Socket example: TCP Listener

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 153

Extended Socket frames Available Extended Socket frames

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 154

Available Extended Socket frames
Note For information about all frames, see API frames.

Socket Create - 0x40
Socket Option Request - 0x41
Socket Connect - 0x42
Socket Close - 0x43
Socket Send (Transmit) - 0x44
Socket SendTo (Transmit Explicit Data): IPv4 - 0x45
Socket Bind/Listen - 0x46
Socket Create Response - 0xC0
Socket Option Response - 0xC1
Socket Connect Response - 0xC2
Socket Close Response - 0xC3
Socket Listen Response - 0xC6
Socket New IPv4 Client - 0xCC
Socket Receive - 0xCD
Socket Receive From: IPv4 - 0xCE
Socket Status - 0xCF

Extended Socket example: Single HTTP Connection
This example demonstrates a complete request with an HTTP server. It fetches a random fact about a
number from a web services API offered by the website http://numbersapi.com.

Note Digi is not affiliated with numbersapi.com and the example is for education only.

Send a Socket Create frame

Note To adapt this example for an HTTPS server, change Protocol below to 0x04 (TLS) and optionally
use the Socket Option frame to specify a TLS profile.

Field Value

Frame type 0x40 (Socket Create)

Frame ID 0x01

Protocol 0x01 (TCP)

Socket Create frame data:

7E 00 03 40 01 01 BD

http://numbersapi.com/

Extended Socket frames Extended Socket example: Single HTTP Connection

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 155

Receive a Socket Create response
The XBee responds to the Socket Create request with a response. The response contains the socket
ID assigned. In this example, the socket ID is 0.

Field Value

Frame type 0xC0 (Socket Create Response)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Create Response received from XBee:

7E 00 04 C0 01 00 00 3E

Send Socket Connect
This examples uses the "string" destination address type to have the XBee perform DNS look-up
during the connection process.

Note To adapt this example for TLS, use destination port 0x01 0xbb (decimal 443). Be aware that
many HTTPS servers use SNI (Server Name Identification) which is not currently supported.

Field Value

Frame type 0x42 (Socket Create Response)

Frame ID 0x01

Socket ID 0x00

Destination Port 0x00 0x50 (80 decimal, HTTP)

Destination Address Type 0x01 (String)

Destination Address numbersapi.com

Socket Connect frame data:

7E 00 14 42 01 00 00 50 01 6E 75 6D 62 65 72 73 61 70 69 2E 63 6F 6D C8

Receive a Socket Connect Response
The request to connect is immediately acknowledged with a response. However, it is not permitted to
proceed transmitting data until the next stage, after a Socket Status frame has been received
indicating success.

http://numbersapi.com/

Extended Socket frames Extended Socket example: Single HTTP Connection

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 156

Field Value

Frame type 0xC2 (Socket Connect Response)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Connect Response received from XBee:

7E 00 04 C2 01 00 00 3C

Receive a Socket Status
The socket has been fully established when a Socket Status frame is received with the connected
status after the socket has connected.

Field Value

Frame type 0xCF (Socket Status)

Socket ID 0x00

Status 0x00 (Connected)

Socket Status received from XBee with connected status:

7E 00 03 CF 00 00 30

Send HTTP Request using Socket Send frame
The request uses the "Connection: close" header to have the server close the connection on request
completion. This allows the example to demonstrate the Socket Status reporting of a close by the
peer.

Field Value

Frame type 0x44 (Socket Status)

Frame ID 0x01

Socket ID 0x00

Transmit Options 0x00

Data GET /random/trivia HTTP/1.1
Host: numbersapi.com
Connection: close

Socket Send frame data:

http://numbersapi.com/

Extended Socket frames Extended Socket example: Single HTTP Connection

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 157

7E 00 4C 44 01 00 00 47 45 54 20 2F 72 61 6E 64 6F 6D 2F 74 72 69 76 69 61 20 48 54 54 50 2F 31 2E
31 0D 0A 48 6F 73 74 3A 20 6E 75 6D 62 65 72 73 61 70 69 2E 63 6F 6D 0D 0A 43 6F 6E 6E 65 63 74
69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A 0D 0A B6

Receive TX Status
Extended sockets use the existing TX Status frame (0x89) to report acceptance of the data for
transmit.

Field Value

Frame type 0x89 (TX Status)

Frame ID 0x01

Status 0x00 (Success)

TX Status received from XBee data:

7E 00 03 89 01 00 75

Receive one or more Receive Data frames
The server will respond with an interesting fact about a number. The following information is a sample
response. Multiple frames may be needed to contain the full response content depending on size and
network conditions.

Field Value

Frame type 0xCD (Socket Receive)

Frame ID 0x00

Socket ID 0x00

Status 0x00

Payload HTTP/1.1 200 OK
Server: nginx/1.4.6 (Ubuntu)
Date: Thu, 18 Jul 2019 16:13:47 GMT
Content-Type: text/plain; charset="UTF-8"; charset=utf-8
Content-Length: 53
Connection: close
X-Powered-By: Express
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: X-Requested-With
X-Numbers-API-Number: 270
X-Numbers-API-Type: trivia
Pragma: no-cache
Cache-Control: no-cache
Expires: 0

270 is the average number of days in human pregnancy.

Receive Data received from XBee containing web service response:

Extended Socket frames Extended Socket example: UDP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 158

7E 01 C5 CD 00 00 00 48 54 54 50 2F 31 2E 31 20 32 30 30 20 4F 4B 0D 0A 53 65 72 76 65 72 3A 20
6E 67 69 6E 78 2F 31 2E 34 2E 36 20 28 55 62 75 6E 74 75 29 0D 0A 44 61 74 65 3A 20 54 68 75 2C 20
31 38 20 4A 75 6C 20 32 30 31 39 20 31 36 3A 31 33 3A 34 37 20 47 4D 54 0D 0A 43 6F 6E 74 65 6E 74
2D 54 79 70 65 3A 20 74 65 78 74 2F 70 6C 61 69 6E 3B 20 63 68 61 72 73 65 74 3D 22 55 54 46 2D 38
22 3B 20 63 68 61 72 73 65 74 3D 75 74 66 2D 38 0D 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68
3A 20 35 33 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A 58 2D 50 6F 77 65 72
65 64 2D 42 79 3A 20 45 78 70 72 65 73 73 0D 0A 41 63 63 65 73 73 2D 43 6F 6E 74 72 6F 6C 2D 41
6C 6C 6F 77 2D 4F 72 69 67 69 6E 3A 20 2A 0D 0A 41 63 63 65 73 73 2D 43 6F 6E 74 72 6F 6C 2D 41
6C 6C 6F 77 2D 48 65 61 64 65 72 73 3A 20 58 2D 52 65 71 75 65 73 74 65 64 2D 57 69 74 68 0D 0A
58 2D 4E 75 6D 62 65 72 73 2D 41 50 49 2D 4E 75 6D 62 65 72 3A 20 32 37 30 0D 0A 58 2D 4E 75 6D
62 65 72 73 2D 41 50 49 2D 54 79 70 65 3A 20 74 72 69 76 69 61 0D 0A 50 72 61 67 6D 61 3A 20 6E 6F
2D 63 61 63 68 65 0D 0A 43 61 63 68 65 2D 43 6F 6E 74 72 6F 6C 3A 20 6E 6F 2D 63 61 63 68 65 0D
0A 45 78 70 69 72 65 73 3A 20 30 0D 0A 0D 0A 32 37 30 20 69 73 20 74 68 65 20 61 76 65 72 61 67 65
20 6E 75 6D 62 65 72 20 6F 66 20 64 61 79 73 20 69 6E 20 68 75 6D 61 6E 20 70 72 65 67 6E 61 6E 63
79 2E 8B

Receive Socket Status indicating closed connection
Finally, due to the "Connection" header in the request, the server should remotely close the
connection.

Field Value

Frame type 0xCF (TX Status)

Socket ID 0x00

Status 0x07 (Connection lost)

Example Socket Status received from XBee indicating connection lost:

7E 00 03 CF 00 07 29

When Socket Status indicating a connection close is received, the socket ID will have been de-
allocated by the XBee and no further operations are possible or necessary using that ID.

Extended Socket example: UDP
UDP is connection-less, so this example demonstrates that a Socket Connect frame is not required to
begin communication and that multiple peers can be used with a single socket.

Send a Socket Create frame

Field Value

Frame type 0x40 (Socket Create)

Frame ID 0x01

Protocol 0x00 (UDP)

UDP Socket Create frame data:

7E 00 03 40 01 00 BE

Extended Socket frames Extended Socket example: UDP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 159

Receive a Socket Create response

Field Value

Frame type 0xC0 (Socket Create Response)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Create Response received from XBee:

7E 00 04 C0 01 00 00 3E

Bind local source addres
The bind/listen operation is necessary prior to transmit in order to assign a known source address to
all data sent from this socket.

Field Value

Frame type 0x46 (Socket Bind/Listen)

Frame ID 0x01

Socket ID 0x00

Source Port 0x12 0x34

Socket Bind/Listen frame data:

7E 00 05 46 01 00 12 34 72

Receive Bind/Listen Response
The XBee generates a response indicating the status of the request to bind the requested port.

Field Value

Frame type 0xC6 (Socket Bind/Listen Response)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Bind/Listen Response received from XBee:

7E 00 04 C6 01 00 00 38

Extended Socket frames Extended Socket example: UDP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 160

Send to Digi echo server
Digi hosts a server at 52.43.121.77 port 10001 which echos all UDP traffic sent to it.

Field Value

Frame type 0x45 (Socket SendTo)

Frame ID 0x01

Socket ID 0x00

Destination Address 0x34 0x2B 0x79 0x4D (52.43.121.77)

Destination Port 0x27 0x11 (decimal 10001)

Transmit Options 0x00

Payload echo this

Socket SendTo frame data:

7E 00 13 45 01 00 34 2B 79 4D 27 11 00 65 63 68 6F 20 74 68 69 73 E5

Receive TX Status
Extended sockets use the existing TX Status frame (0x89) to report acceptance of the data for
transmit.

Field Value

Frame type 0x89 (TX Status)

Frame ID 0x01

Status 0x00 (Success)

TX Status received from XBee:

7E 00 03 89 01 00 75

Receive echoed data
When the response from the server is sent back, the XBee provides it using a Socket Receive From
frame.

Field Value

Frame type 0xCE (Socket Receive From)

Frame ID 0x00

Socket ID 0x00

Extended Socket frames Extended Socket example: UDP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 161

Field Value

Source address 0x34 0x2B 0x79 0x4D (52.43.121.77)

Source Port 0x27 0x11 (decimal 10001)

Status 0x00 (Success)

Payload echo this

Socket ReceiveFrom received from XBee, containing echoed data:

7E 00 13 CE 00 00 34 2B 79 4D 27 11 00 65 63 68 6F 20 74 68 69 73 5D

Send to Digi time server
Digi hosts a server at 54.43.121.77 port 10002 which will reply with the time when it receives a
packet.

Field Value

Frame type 0x45 (Socket SendTo)

Frame ID 0x01

Socket ID 0x00

Destination Address 0x34 0x2B 0x79 0x4D (52.43.121.77)

Destination Port 0x27 0x12 (decimal 10002)

Transmit Options 0x00

Payload 0x20 (ASCII space, any value should do)

Socket SendTo time server frame data:

7E 00 0B 45 01 00 34 2B 79 4D 27 12 00 20 3B

Receive TX Status
This is exactly the same as the previous transmission to the echo server on success.

Receive daytime value
When the response from the server is sent back, the XBee will provide it using a Socket Receive From
frame.

Field Value

Frame type 0xCE (Socket Receive From)

Frame ID 0x00

Extended Socket frames Extended Socket example: UDP

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 162

Field Value

Socket ID 0x00

Source address 0x34 0x2B 0x79 0x4D (52.43.121.77)

Source Port 0x27 0x12 (decimal 10002)

Status 0x00 (Success)

Payload <current UTC time>

Socket Receive From frame received from XBee containing time data:

7E 00 1E CE 00 00 34 2B 79 4D 27 12 00 32 30 31 39 2D 30 37 2D 31 38 20 31 38 3A 35 32 3A 34 33
0A 08

Close the socket
When the socket is no longer needed it should be closed to return resources to the system.

Field Value

Frame type 0x43 (Socket Close)

Frame ID 0x01

Status 0x00

Socket Close frame data:

7E 00 03 43 01 00 BB

Receive close response
Finally, the XBee indicates the socket has been closed with a Socket Close Response frame.

Field Value

Frame type 0xC3 (Socket CloseResponse)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Close Response received from XBee:

7E 00 04 C3 01 00 00 3B

Extended Socket frames Extended Socket example: TCP Listener

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 163

Extended Socket example: TCP Listener
The following example demonstrates setting up a TCP listener on the XBee Cellular and interacting
with incoming connections. It will open up a listener socket on a given port and then receive data from
a client.

Note The module must either have a public IP or a be on a private network in order to be accessible
as a server (listener).

Send a Socket Create frame

Note The XBee Cellular does not support incoming TLS sockets.

Field Value

Frame type 0x40 (Socket Create)

Frame ID 0x01

Protocol 0x01 (TCP)

Socket Create frame data:

7E 00 03 40 01 01 BD

Receive a Socket Create response
The response contains the socket ID assigned. This example assumes zero.

Field Value

Frame type 0xC0 (Socket Create Response)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Create Response received from XBee:

7E 00 04 C0 01 00 00 3E

Designate the socket as a listener
The Socket Bind/Listen Frame takes the socket ID from the socket create response and a source port
that the socket will then listen on. In this example port 10001 is used.

Extended Socket frames Extended Socket example: TCP Listener

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 164

Field Value

Frame type 0x46 (Socket Listen)

Frame ID 0x01

Socket ID 0x00

Source Port 0x2711 (10001)

Socket Bind/Listen frame data:

7E 00 05 46 01 00 27 11 80

Receive a Socket Bind/Listen Response
The Socket Bind/Listen Response contains a Status. A Status of zero is a success and any other value
is an error.

Field Value

Frame type 0xC6 (Socket Listen)

Frame ID 0x01

Socket ID 0x00

Status 0x00 (Success)

Socket Bind/Listen frame received from XBee:

7E 00 04 C6 01 00 00 38

Making a connection to the listener socket
The IP of the XBee can be acquired through the MY at command.

ATMY
172.20.1.235

Using an external tool like netcat, a connection can be made to the given address.

nc -p 10001 172.20.1.235 10001
Hello XBee!

After the connection has been made, the XBee outputs a Socket New IPv4 Client frame indicating the
presence of a new client connection. It contains the listener's socket ID and the new Client Socket ID
along with the connection's remote address information.

Field Value

Frame type 0xCC (Socket New IPv4 Client)

Extended Socket frames Extended Socket example: TCP Listener

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 165

Field Value

Socket ID 0x00

Client Socket ID 0x01

Remote Address 0x0A 0x0A 4A 9D

Remote Port 0x27 0x11

Socket New IPv4 Client frame:

7E 00 09 CC 00 01 0A 0A 4A 9D 27 11 FF

Note XBee Cellular Cat-1 variants require data to be sent before the connection is presented. Other
variants present the connection as soon as it is made.

Receiving Data from the new socket
After the connection is established, data received from the new socket is contained in a Socket
Receive frame just like any other TCP socket.

Field Value

Frame type 0xCD (Socket Status)

Frame ID 0x01

Socket ID 0x01

Status 0x00

Payload Hello XBee!

Receive Data indicating data from remote TCP peer:

7E 00 10 CD 00 01 00 48 65 6C 6C 6F 20 58 42 65 65 21 0A 8E

Receive a Socket Status indicating closed connection
You may close the client socket remotely which elicits a Socket Status with a Status of 0x07.

Field Value

Frame type 0xCF (Socket Status)

Socket ID 0x01

Status 0x07 (Connection lost)

Socket Status received from XBee indicating connection lost:

7E 00 03 CF 01 07 28

Extended Socket frames Extended Socket example: TCP Listener

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 166

When a Socket Status indicating a connection close is received, the socket ID will have been de-
allocated by the XBee and no further operations are possible or necessary using that ID.

Transport Layer Security (TLS)

For detailed information about using MicroPython on the XBee Cellular Modem refer to the Digi
MicroPython Programming Guide.

Specifying TLS keys and certificates 168
Transparent mode and TLS 169
API mode and TLS 169
Key formats 169
Certificate limitations 169
Cipher suites 169
Server Name Indication (SNI) 170
Secure the connection between an XBee and Remote Manager with server authentication 170

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 167

http://www.digi.com/resources/documentation/Digidocs/90002219/
http://www.digi.com/resources/documentation/Digidocs/90002219/

Transport Layer Security (TLS) Specifying TLS keys and certificates

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 168

Specifying TLS keys and certificates
These AT commands, when used together, let you interact with TLS features: ATFS (File System), TL
(TLS Protocol Version), IP (IP Protocol), $0 (TLS Profile 0), $1 (TLS Profile 1), and $2 (TLS Profile 2). The
format of the $ commands is:
AT$<num>[<ca_cert>];[<client_cert>];[<client_key>]
Where:

n num: Profile index. Index zero is used for Transparent mode connections and TLS connections
using Transmit (TX) Request: IPv4 - 0x20.

n ca_cert: (optional) Filename of a file in the certs/ directory. Indicates the certificate identifying
a trusted root certificate authority (CA) to use in validating servers. If ca_cert is empty the
server certificate will not be authenticated. This must be a single root CA certificate. The
modules do not allow a non-self signed certificate to work, so intermediate CAs are not
enough.

n client_cert: (optional) Filename of a file in the certs/ directory. Indicates the certificate
presented to servers when requested for client authentication. If client_cert is empty no
certificate is presented to the server should it request one. This may result in mutual
authentication failure.

n client_key: (optional) Filename of a file in the certs/ directory. Indicates the private key
matching the public key contained in client_cert. This should be a secure file uploaded with
ATFS XPUT filename. This should always be provided if client_cert is provided and match the
certificate or client authentication will fail.

The default value is ";;". This default value preserves the legacy behavior by allowing the creation of
encrypted connections that are confidential but not authenticated.
To specify a key stored outside of certs/, you can either use a relative path, for example ../server.pem
or an absolute path starting with /flash, for example /flash/server.pem. Both examples refer to the
same file.
It is not an error at configuration time to name a file that does not yet exist. An error is generated if
an attempt to create a TLS connection is made with improper settings.

n Files specified should all be in PEM format, not DER.
n Upload private keys securely with ATFS XPUT filename.
n Certificates can be uploaded with ATFS PUT filename as they are not sensitive. It is not

possible to use ATFS GET filename to GET them if they have been securely uploaded.

To authenticate a server not participating in a public key infrastructure (PKI) using CAs, the server
must present a self-signed certificate. That certificate can be used in the ca_cert field to authenticate
that single server.
There are effectively three levels of authentication provided depending on the parameters provided

1. No authentication: None of the parameters are provided, this is the default value. With this
configuration identity is not validated and a man in the middle (MITM) attack is possible.

2. Server authentication: Only ca_cert is provided. Only the servers identity is checked
3. Mutual authentication: All items are provided and both sides are assured of the identity of their

peer

It is not possible to only have client authentication.

Transport Layer Security (TLS) Transparent mode and TLS

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 169

Transparent mode and TLS
Transparent mode connections made when IP (IP Protocol) = 4 (TLS) are made using the configuration
specified by $0 (TLS Profile 0).

API mode and TLS
On the Transmit (TX) Request: IPv4 - 0x20 frame, when you specify protocol 4 (TLS), the profile
configuration specified by $0 (TLS Profile 0) is used to form the TLS connection. Tx Request with TLS
Profile - 0x23 lets you choose the IP setting for the serial data.

Key formats
The RSA PKCS#1 format is the only common format across XBee Cellular device variants. You can
identify a PKCS#1 key file by the presence of BEGIN RSA PRIVATE KEY in the file header.
Digi's implementation does not support encrypted keys, we use file system encryption to protect the
keys at rest in the system.

Certificate limitations
The XBee Cellular Modem only supports certificate files that contain a single certificate in them.
The implications of this are:

n For client certificate files (for example when client authentication is required):
l Self-signed certificates will work.
l Certificates signed by the root CA will work, because the root CA can be omitted per RFC

5246. The root certificate authority may be omitted from the chain, under the assumption
that the remote end must already possess it in order to validate it in any case.

l Certificate chains that include a intermediate CA are problematic. To work around this the
client's certificate chain has to be supplied to the server outside of the connection.

n For server certificate files (when server authentication is required) this is not a problem unless
the client is expected to connect to multiple servers that are using different self signed
certificates or are using certificate chains that are signed by different root CA certificates. To
work around this you have to change the certificates before making the connection, or in the
case of API mode specify a different authentication profile.

Cipher suites
For the Telit LE866 cellular component:

n TLS_RSA_WITH_RC4_128_MD5
n TLS_RSA_WITH_RC4_128_SHA
n TLS_RSA_WITH_AES_128_CBC_SHA
n TLS_RSA_WITH_NULL_SHA
n TLS_RSA_WITH_AES_256_CBC_SHA

This list may be incomplete.

Transport Layer Security (TLS) Server Name Indication (SNI)

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 170

Server Name Indication (SNI)
We do not currently support SNI. Therefore servers which use SNI to present certificates based on
client provided host data may be unable to establish the expected connections.

Secure the connection between an XBee and Remote Manager
with server authentication

The XBee devices that have the *11 or later version of the firmware installed are by default able to
secure the TLS connection to Digi Remote Manager. The default configuration provides confidentiality
of the communication but is not able to authenticate the server without a certificate being provided.
If you have devices that have been upgraded in the field or manufactured prior to being pre-populated
with the Remote Manager certificate, you should follow the procedure below to add the necessary
certificate if server authentication is needed.

Step 1: Get the certificate
1. Navigate to the Firmware Updates section of the Digi XBee Cellular LTE CAT 1 Verizon support

page.
2. Click Remote Manager TLS Public Certificate to download the certificate .zip file.
3. Unzip the .zip file.
4. Calculate the SHA-256 hash to verify that the file is correct. The correct file will have an SHA-

256 hash of:
33d91e18668b0d8a9ec59c5f9f312c53ca2884adaa62337839e5495c26d2d64c

Step 2: Configure device
You should confirm that the default settings are correct. You can use either Remote Manager or XCTU
to verify these settings and place the certificate file in the correct location.

1. Verify the following settings:

Setting Value

DO Bit 0 (mask 0x1) must be set. This enables the use of Digi Remote Manager within
the firmware.

MO Bit 1 (mask 0x2) must be set. When this value is set the Remote Manager TCP
connection will be secured with TLS.

$D By default will contain the value /flash/cert/digi-remote-mgr.pem. This is the file
system location where the firmware will look for the certificate to use.

2. Use XCTU or Remote Manager to place the downloaded and unzipped certificate file in the
location specified in the $D command.

Step 3: Verify that authentication is being performed
The next TCP connection to Remote Manager should only succeed if the server can be authenticated
using the provided certificate. You can confirm that the server has been authenticated.

https://www.digi.com/support/productdetail?pid=5623&type=firmware
https://www.digi.com/support/productdetail?pid=5623&type=firmware

Transport Layer Security
(TLS)

Secure the connection between an XBee and Remote Manager with server
authentication

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 171

1. Cause an active connection to Remote Manager. For example, you could set bit 0 for the MO
command. Make sure that you do not clear bit 1.

2. After a short wait you should be able to see the device as connected in Remote Manager.
a. Log in to Remote Manager.
b. Click Device Management.
c. Locate the device in the device list and verify that the connection icon in the left column is

blue and the hover tool tip says "Connected".
3. When the device is connected to Remote Manager, the DI command can take on any of the

three values shown below, based on the security level of the connection. Verify the that the DI
command is set to 6 to verify that the server was correctly authenticated.

n 0: Connected without TLS
n 5: Connected with TLS but without authentication
n 6: Connected with TLS and with authentication

https://remotemanager.digi.com/

AT commands

Special commands 173
Cellular commands 176
Network commands 183
Addressing commands 187
Serial interfacing commands 191
I/O settings commands 194
I/O sampling commands 202
Sleep commands 204
Command mode options 206
MicroPython commands 208
Firmware version/information commands 210
Diagnostic interface commands 214
Execution commands 218
File system commands 219
Remote Manager commands 222
System commands 225
Socket commands 226

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 172

AT commands Special commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 173

Special commands
The following commands are special commands.

AC (Apply Changes)
Immediately applies new settings without exiting Command mode.
Applying changes means that the device re-initializes based on changes made to its parameter values.
Once changes are applied, the device immediately operates according to the new parameter values.
This behavior is in contrast to issuing the WR (Write) command. The WR command saves parameter
values to non-volatile memory, but the device still operates according to previously saved values until
the device is rebooted or you issue the CN (Exit AT Command Mode) or AC commands.

Parameter range
N/A

Default
N/A

FR (Force Reset)
Resets the device. The device responds immediately with an OK and performs a reset 100 ms later.
If you issue FR while the device is in Command Mode, the reset effectively exits Command mode.

Note Digi recommends shutting down the cellular component before resetting or rebooting the device
to allow the cellular module to detach from the network. The cellular component can be shut down by
issuing the SD command.

Parameter range
N/A

Default
N/A

RE command
Restore device parameters to factory defaults.
The RE command does not write restored values to non-volatile (persistent) memory. Issue the WR
(Write) command after issuing the RE command to save restored parameter values to non-volatile
memory.

Parameter range
N/A

Default
N/A

AT commands Special commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 174

SD (Shutdown)
Shuts down the device. When the shut down process is complete, the device returns OK. After the
device responds OK, you can safely remove power from the device.
If the radio can't be fully shut down within two minutes, the device returns ERROR.
You can verify the state of the device using the AI command. After you issue the SD command and a
response has been returned (either OK or ERROR), issue the AI command. If the shutdown was
successful, 2D is returned.

Parameter range

Parameter Description

0 Shuts down the device. When the shut down process is complete, the
device returns OK.

1 Reboots the module when the shut down completes.

Default
N/A

WR (Write)
Writes parameter values to non-volatile memory so that parameter modifications persist through
subsequent resets.

Note Once you issue a WR command, do not send any additional characters to the device until after
you receive the OK response.

Parameter range
N/A

Default
N/A

HI (Hardware Identity)
Returns a hexadecimal value that indicates the hardware identity of the module. You can use this
command to determine the feature availability on the specific hardware.

Parameter range
0 - 3

Value Description

3 If the value returned is 3 then the hardware is compatible with the
connected sleep feature.
If any other value is returned, the connected sleep feature cannot be used
on the device.

AT commands Special commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 175

Default
N/A

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 176

Cellular commands
The following AT commands are cellular configuration and data commands.

PH (Phone Number)
Reads the SIM card phone number.
If PH is blank, the XBee Cellular Modem is not registered to the network.

Parameter range
N/A

Default
Set by the cellular carrier via the SIM card

S# (ICCID)
Reads the Integrated Circuit Card Identifier (ICCID) of the inserted SIM.

Parameter range
N/A

Default
Set by the SIM card

IM (IMEI)
Reads the device's International Mobile Equipment Identity (IMEI).

Parameter range
N/A

Default
Set in the factory

II (Subscriber identity)
Reads the IMSI (International Mobile Subscriber Identity) from the SIM inserted into the module.

Parameter range
N/A

Default
N/A

MN (Operator)
Reads the network operator on which the device is registered.

Parameter range
N/A

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 177

MV (Modem Firmware Version)
Read the firmware version string for cellular component communications. See the related VR
(Firmware Version) command.

Parameter range
N/A

Default
Set in the currently loaded firmware

MU (Modem firmware revision number)
Read the firmware revision number of the cellular component. See the related MV (Modem Firmware
Version) command.

Parameter range
N/A

Default
Set in the currently loaded firmware

DB (Cellular Signal Strength)
Reads the absolute value of the current signal strength to the cell tower in dB. If DB is blank, the XBee
Cellular Modem has not received a signal strength from the cellular component.
DB only updates when the modem is registered with the cellular tower. It is updated periodically, and
not when read.

Parameter range

Parameter Description

0 Returns the most recent, cached RSSI signal value received.

1 Returns a fresh, uncached RSSI signal value.

Returned values
0x71 - 0x33 (-113 dBm to -51 dBm) [read-only]

Default
N/A

DT (Cellular Network Time)
Reads the current network-provided local time of the XBee device, as reported by the cellular tower.
If the time is not known, the response is empty. This value is synchronized with the network
approximately once per hour.

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 178

Note The time is provided by the network. If the time is not what you expect, contact your network
provider.

Parameter range
0 - 1

Value Description

0 The response is the number of seconds since 2000-01-01 00:00:00, as a 32-
bit number. This is the default.

1 The response is the current date and time in ISO 8601 format. For example,
"2018-12-25T22:00:05".

Note You can also send DT, which acts like DT=0.

Default
0

AN (Access Point Name)
Specifies the packet data network that the modem uses for Internet connectivity. This information is
provided by your cellular network operator. After you set this value, applying changes with AC (Apply
Changes) or CN (Exit Command mode) triggers a network reset.
In order to meet network requirements, on Verizon 4G, the APN value in the cellular component is only
changed when AN has been run (with the same or a different value) and changes are applied.
When you change APN and after you send AC, wait for AI to return 0, and for OA (Operating APN) to
return the APN that you set.
Hyphen (-) means no APN is being specified. On Verizon 4G, this leaves the APN in the cellular
component alone. On 3G Global, this configures the cellular component to use an APN supplied by the
network. This depends on your service plan.
Some common APN values are:

Value Description

WYLESLTE.GW7.VZWENTP KORE SIMS in the evaluation kit

VZWINTERNET Standard Verizon SIMS

Parameter range
1 - 100 ASCII characters

Default
-

AM (Airplane Mode)
When set, the cellular component of the XBee Cellular Modem is fully turned off and no access to the
cellular network is performed or possible.

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 179

Parameter range
0 - 1
0 = Normal operation
1 = Airplane mode

Default
0

OA (Operating APN)
Reads the APN value currently configured in the cellular component.

Parameter range
ASCII characters

Default
N/A

DV (Secondary Antenna Function Switch)
Set and read the secondary antenna function setting of the cellular component. When enabled, the
cellular component uses both antennas to improve receive sensitivity.
This setting is applied only while the XBee Cellular Modem is initializing the cellular component. After
changing this setting, you must:

1. Use WR (Write) to write all values to flash.
2. Use FR (Force Reset) to reset the device.
3. Wait for the cellular component to be initialized: AI (Association Indication) reaches 0x00.
4. Use FR to reset the device a second time.
5. Wait again for the cellular component to initialize: AI reaches 0x00.

Parameter range
0 - 1

Bit Description

0 The secondary antenna is unused.

1 The cellular component uses the secondary antenna to improve received
sensitivity.
This is the default setting.

Default
1

SQ (Reference Signal Received Quality)
Returns the Reference Signal Received Quality (RSRQ) value.
The value returned is in hex, and should be converted by the user with the following formula:

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 180

RSRQ = -(<hex_value> / 0xA)
Example: The value returned from the command is 82:

RSRQ = -(0x82 / 0xA) = -13.0 dB
Example: The value returned is A0:

RSRQ = -(0xA0 / 0xA) = -16.0 dB
If the value cannot be retrieved for some reason, such as the device is not on the network yet, an
empty string with OK after it is returned.

Parameter range
N/A

Default
N/A

SW (Reference Signal Received POWER)
Returns the Reference Signal Received Power (RSRP) value.
The value returned is in hex, and should be converted by the user with the following formula:

RSRP = -(<hex_value> / 0xA)
Example: The value returned from the command is 384:

RSRP = -(0x384 / 0xA) = -90.0 dBm
Example: The value returned is A0:

RSRQ = -(0xA0 / 0xA) = -16.0 dB
If the value cannot be retrieved for some reason, such as the device is not on the network yet, an
empty string with OK after it is returned.

Parameter range
N/A

Default
N/A

PN (SIM PIN)
Specifies the PIN when using a SIM.
This command is write-only.

Parameter range
4 to 8 ASCII digits or space character.
A value of a single space character (ASCII 0x20) acts as an empty value.

Default
0x20: A single ASCII space character that indicates there is no PIN.

PK (SIM PUK)
Specifies the PUK for unlocking a SIM. This is needed only if the wrong PIN was used and the SIM is
locked out.

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 181

This command is write-only.

Parameter range
8 ASCII digits or space character
A value of a single space character (ASCII 0x20) acts as an empty value.

Default
0x20: A single ASCII space that indicates there is no PUK.

CU (Cellular user name)
Specifies the user name used when authenticating to the cellular network.
This command is write-only.

Parameter range
1 to 30 ASCII characters
A value of a single space character (ASCII 0x20) acts as an empty value.

Default
0x20: A single ASCII space that indicates there is no cellular user name.

CW (Cellular password)
Specifies the password used when authenticating to the cellular network.
This command is write-only.

Parameter range
1 to 30 ASCII characters
A value of a single space character (ASCII 0x20) acts as an empty value.

Default
0x20: A single ASCII space that indicates there is no cellular password.

FC (Frequency Channel Number)
Returns the EARFCN of the current cellular connection.
The EARFCN encodes the carrier frequency or frequencies that the cellular radio is using. Refer to the
3GPP specifications or various online tools or guides to determine the corresponding band number.
If the value cannot be retrieved for some reason, such as the device is not on the network, the
response is empty. When in command mode and the value cannot be retrieved, OK is returned.

Parameter range
N/A

Default
N/A

AT commands Cellular commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 182

OT (Operating Technology)
Reports the active technology of the current network connection.
A blank value (OK returned) indicates that the access technology is currently unknown.

Range
0x0 - 0xFFFF

Parameter Description

7 LTE

Default
N\A

AT commands Network commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 183

Network commands
The following commands are network commands.

IP (IP Protocol)
Sets or displays the IP protocol used for client and server socket connections in IP socket mode.

Parameter range
0 - 4

Value Description

0x00 UDP

0x01 TCP

0x02 SMS

0x03 Reserved

0x04 TLS over TCP communication

Default
0x01

TL (TLS Protocol Version)
Sets the TLS protocol version used for the TLS socket. If you change the TL value, it does not affect
any currently open sockets. The value only applies to subsequently opened sockets.

Note Due to known vulnerabilities in prior protocol versions, we strongly recommend that you use the
latest TLS version whenever possible.

Range

Value Description

0x00 SSL v3

0x01 TLS v1.0

0x02 TLS v1.1

0x03 TLS v1.2

Default
0x03

$0 (TLS Profile 0)
Specifies the TLS certificate(s) to use in Transparent mode (when IP (IP Protocol) = 4) or API mode
(Transmit (TX) Request: IPv4 - 0x20 or Tx Request with TLS Profile - 0x23 with profile set to 0).

AT commands Network commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 184

Format
server_cert;client_cert;client_key

Parameter range
From 1 through 127 ASCII characters.

Default
N/A

$1 (TLS Profile 1)
Specifies the TLS certificate(s) to use for Tx Request with TLS Profile - 0x23 transmissions with profile
set to 1.

Format
server_cert;client_cert;client_key

Parameter range
From 1 through 127 ASCII characters.

Default
N/A

$2 (TLS Profile 2)
Specifies the TLS certificate(s) to use for Tx Request with TLS Profile - 0x23 transmissions with profile
set to 2.

Format
server_cert;client_cert;client_key

Parameter range
From 1 through 127 ASCII characters.

Default
N/A

TM (IP Client Connection Timeout)
The IP client connection timeout. If there is no activity for this timeout then the connection is closed. If
TM is 0, the connection is closed immediately after the device sends data.
If you change the TM value while in Transparent Mode, the current connection is immediately closed.
Upon the next transmission, the TM value applies to the newly created socket.
If you change the TM value while in API Mode, the value only applies to subsequently opened sockets.
TM does not apply to explicit sockets.

Parameter range
0 - 0xFFFF [x 100 ms]

AT commands Network commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 185

Default
0xBB8 (5 minutes)

TS (IP Server Connection Timeout)
The IP server connection timeout. If no activity for this timeout then the connection is closed. When
set to 0 the connection is closed immediately after data is sent.]

Parameter Range
10 - 0xFFFF; (x 100 ms)

Default
3000

DO (Device Options)
Enables and disables special features on the XBee Cellular Modem.

Bit 0 - Remote Manager support
Controls whether Remote Manager is active.
If the XBee Cellular Modem cannot establish a connection with Remote Manager, it waits 30 seconds
before trying again. On each successive connection failure, the wait time doubles (60 seconds, 120,
240, and so on) up to a maximum of 1 hour. This time resets to 30 seconds once the connection to
Remote Manager succeeds or if the device is reset.

Bits 1 - 7
Reserved

Range
0-3

Bitfield

Bit Description

0 Enable Remote Manager support

1-7 Reserved for future use

Default
1 (Bit 0 enabled)

PG (Ping)
Sends an ICMP Echo Request to the specified host and reports round trip time when Echo Response is
received. The command sends a single request with a timeout of five seconds. If five seconds elapses
with no response the command will timeout and report an error.
The XBee module reports the round trip time in 100 ms increments, with the reported value being the
floor of the round trip time.

AT commands Network commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 186

Parameter range
Valid FQDN (Fully Qualified Domain Name) or IP address

Default
N/A

AT commands Addressing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 187

Addressing commands
The following AT commands are addressing commands.

SH (Serial Number High)
The upper digits of the unique International Mobile Equipment Identity (IMEI) assigned to this device.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
N/A

SL (Serial Number Low)
The lower digits of the unique International Mobile Equipment Identity (IMEI) assigned to this device.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
N/A

MY (Module IP Address)
Reads the device's IP address. This command is read-only because the IP address is assigned by the
mobile network.
In API mode, the address is represented as the binary four byte big-endian numeric value representing
the IPv4 address.
In Transparent or Command mode, the address is represented as a dotted-quad string notation.

Parameter range
0- 15 IPv4 characters

Default
0.0.0.0

P# (Destination Phone Number)
Sets or displays the destination phone number used for SMS when IP (IP Protocol) = 2 while in
Transparent Operating mode. Phone numbers must be fully numeric, using ASCII digits, for
example: 8889991234.
P# allows international numbers with or without the + prefix. If you omit + and are dialing
internationally, you need to include the proper International Dialing Prefix for your calling region, for
example, 011 for the United States.

Note For information on SMS transmissions in API mode, see Transmit (TX) SMS - 0x1F.

AT commands Addressing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 188

Range

Device firmware versions... Range

Ending in *16 4 - 20 ASCII digits, including an optional + prefix

Ending in *11 to *15 5 - 20 ASCII digits

Ending in *10 or earlier 7 - 20 ASCII digits

Default
N/A

N1 (DNS Address)
Displays the IPv4 address of the primary domain name server.

Parameter Range

Default
0.0.0.0 (waiting on cellular connection)

N2 (DNS Address)
Displays the IPv4 address of the secondary domain name server.

Parameter Range

Default
0.0.0.0 (waiting on cellular connection)

DL (Destination Address)
The destination IPv4 address or fully qualified domain name used by Transparent mode.
To set the destination address to an IP address, the value must be a dotted quad, for example
XXX.XXX.XXX.XXX.
To set the destination address to a domain name, the value must be a legal Internet host name, for
example remotemanager.digi.com

Parameter range
0 - 128 ASCII characters

Default
0.0.0.0

The destination IPv4 address or fully qualified domain name used by Transparent mode.

OD (Operating Destination Address)
Read the destination IPv4 address currently in use by Transparent mode. The value is 0.0.0.0 if no
Transparent IP connection is active.

AT commands Addressing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 189

In API mode, the address is represented as the binary four byte big-endian numeric value representing
the IPv4 address.
In Transparent or Command mode, the address is represented as a dotted-quad string notation.

Parameter range
-

Default
0.0.0.0

DE (Destination port)
Sets or displays the destination IP port number used in Transparent mode.
This command reads all input as hexadecimal. All values must be entered in hexadecimal with no
leading 0x. For example, the destination port 9001 has the hexadecimal value of 0x2329. The
command would be entered as ATDE 2329.

Parameter range
0x0 - 0xFFFF

Default
0x2616

C0 (Source Port)
The IP port used to listen for incoming connections (TCP/TLS) or incoming data (UDP) when using
Transparent mode or API mode with implicit sockets.
As long as a network connection is established to this port (for TCP) data received on the serial port is
transmitted on the established network connection.
IP (IP Protocol) sets the protocol used.
For more information on using incoming connections, see Socket behavior.

Parameter range
0 - 0xFFFF

Value Description

0 Disabled

Non-0 Enabled on that port

Default
0

LA (Lookup IP Address of FQDN)
Performs a DNS lookup of the given fully qualified domain name (FQDN) and outputs its IP address.
When you issue LA in API mode, the IP address is formatted in binary four byte big-endian numeric
value. In all other cases (for example, Command mode) the format is dotted decimal notation.

AT commands Addressing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 190

Range
Valid FQDN

Default
-

AT commands Serial interfacing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 191

Serial interfacing commands
The following AT commands are serial interfacing commands.

BD (Baud Rate)
Sets or displays the serial interface baud rate for communication between the device's serial port and
the host.
Modified interface baud rates do not take effect until the XBee Cellular Modem exits Command mode
or you issue AC (Apply Changes). The baud rate resets to default unless you save it with WR (Write) or
by clicking the Write module settings button in XCTU.

Parameter range
Standard baud rates: 0x1 - 0xA
Non-standard baud rates: 0x5B9 to 0x5B8D80 (up to 6 Mb/s)

Parameter Description

0x1 2400 b/s

0x2 4800 b/s

0x3 9600 b/s

0x4 19200 b/s

0x5 38400 b/s

0x6 57600 b/s

0x7 115200 b/s

0x8 230400 b/s

0x9 460800 b/s

0xA 921600 b/s

Default
0x3 (9600 b/s)

NB (Parity)
Set or read the serial parity settings for UART communications.

Parameter range
0x00 - 0x02

Parameter Description

0x00 No parity

0x01 Even parity

0x02 Odd parity

AT commands Serial interfacing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 192

Default
0x00

SB (Stop Bits)
Sets or displays the number of stop bits for UART communications.

Parameter range
0 - 1

Parameter Configuration

0 One stop bit

1 Two stop bits

Default
0

RO (Packetization Timeout)
Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode.
RF transmission also starts after the maximum packet size for the selected protocol is received in the
UART receive buffer.
Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.

Parameter range
0 - 0xFF (x character times)

Default
3

TD (Text Delimiter)
The ASCII character used as a text delimiter for Transparent mode. When you select a character,
information received over the serial port in Transparent mode is not transmitted until that character
is received. To use a carriage return, set to 0xD. Set to zero to disable text delimiter checking.

Parameter range
0 - 0xFF

Default
0x0

FT (Flow Control Threshold)
Set or display the flow control threshold.
The device de-asserts CTS when FT bytes are in the UART receive buffer.

AT commands Serial interfacing commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 193

Parameter range
0x9D - 0x82D

Default
0x681

AP (API Enable)
Enables the frame-based application programming interface (API) mode.
The API mode setting. The device can format the RF packets it receives into API frames and send
them out the UART. When API is enabled the UART data must be formatted as API frames because
Transparent mode is disabled. See Modes for more information.

Parameter range
0x00 - 0x05

Parameter Description

0x00 API disabled (operate in Transparent mode)

0x01 API enabled

0x02 API enabled (with escaped control characters)

0x03 N/A

0x04 MicroPython REPL

0x05 Bypass mode

Default
0

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 194

I/O settings commands
The following AT commands are I/O settings commands.

D0 (DIO0/AD0)
Sets or displays the DIO0/AD0 configuration (pin 20).

Parameter range
0, 2 - 5

Parameter Description

0 Disabled

1 N/A

2 Analog input

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

D1 (DIO1/AD1)
Sets or displays the DIO1/AD1 configuration (pin 19).

Parameter range
0 - 6

Parameter Description

0 Disabled

1 SPI_ATTN

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

6 I2C SCL

Default
0

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 195

D2 (DIO2/AD2)
Sets or displays the DIO2/AD2 configuration (pin 18).

Parameter range
0 - 5

Description

0 Disabled

1 SPI_CLK

2 Analog input

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

D3 (DIO3/AD3)
Sets or displays the DIO3/AD3 configuration (pin 17).

Parameter range
0 - 5

Parameter Description

0 Disabled

1 SPI_SSEL

2 Analog input

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

D4 (DIO4)
Sets or displays the DIO4 configuration (pin 11).

Parameter range
0, 1, 3 - 5

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 196

Parameter Description

0 Disabled

1 SPI_MOSI

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

D5 (DIO5/ASSOCIATED_INDICATOR)
Sets or displays the DIO5/ASSOCIATED_INDICATOR configuration (pin 15).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 Associated LED

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
1

D6 (DIO6/RTS)
Sets or displays the DIO6/RTS configuration (pin 16).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 RTS flow control

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 197

Parameter Description

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

D7 (DIO7/CTS)
Sets or displays the DIO7/CTS configuration (pin 12).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 CTS flow control

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0x1

D8 (DIO8/SLEEP_REQUEST)
Sets or displays the DIO8/DTR/SLP_RQ configuration (pin 9).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 SLEEP_REQUEST input

3 Digital input

4 Digital output, default low

5 Digital output, default high

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 198

Default
1

D9 (DIO9/ON_SLEEP)
Sets or displays the DIO9/ON_SLEEP configuration (pin 13).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 ON/SLEEP output

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
1

P0 (DIO10/PWM0 Configuration)
Sets or displays the PWM/DIO10 configuration (pin 6).
This command enables the option of translating incoming data to a PWM so that the output can be
translated back into analog form.

Parameter range
0 - 5

Parameter Description

0 Disabled

1 RSSI PWM0 output

2 PWM0 output

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

P1 (DIO11/PWM1 Configuration)
Sets or displays the DIO11 configuration (pin 7).

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 199

Parameter range
0, 1, 3 - 6

Parameter Description

0 Disabled

1 Fan enable. Output is low when the XBee Cellular Modem is sleeping, turning an
attached fan off when the cellular component is in a power saving mode, and also
during Airplane Mode

3 Digital input

4 Digital output, default low

5 Digital output, default high

6 I2C SDA

Default
0

P2 (DIO12 Configuration)
Sets or displays the DIO12 configuration (pin 4).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MISO

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
0

PD (Pull Direction)
The resistor pull direction bit field (1 = pull-up, 0 = pull-down) for corresponding I/O lines that are set
by PR (Pull-up/down Resistor Enable).
If the bit is not set in PR, the device uses PD.

Note Resistors are not applied to disabled lines.

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 200

See PR (Pull-up/down Resistor Enable) for bit mappings, which are the same.

Parameter range
0x0 – 0x7FFF

Default
0 – 0x7FFF

PR (Pull-up/down Resistor Enable)
Sets or displays the bit field that configures the internal resistor status for the digital input lines.
Internal pull-up/down resistors are not available for digital output pins, analog input pins, or for
disabled pins.
Use the PD command to specify whether the resistor is pull-up or pull-down.

n If you set a PR bit to 1, it enables the pull-up/down resistor.
n If you set a PR bit to 0, it specifies no internal pull-up/down resistor.

The following table defines the bit-field map for both the PR and PD commands.

Bit I/O line Module pin

0 DIO4 pin 11

1 DIO3/AD3 pin 17

2 DIO2/AD2 pin 18

3 DIO1/AD1 pin 19

4 DIO0/AD0 pin 20

5 DIO6/RTS pin 16

6 DIO8/SLEEP_REQUEST pin 9

7 DIO14/DIN pin 3

8 DIO5/ASSOCIATE pin 15

9 DIO9/On/SLEEP pin 13

10 DIO12 pin 4

11 DIO10 pin 6

12 DIO11 pin 7

13 DIO7/CTS pin 12

14 DIO13/DOUT pin 2

Parameter range
0 - 0x7FFF (bit field)

Default
0x7FFF

AT commands I/O settings commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 201

M0 (PWM0 Duty Cycle)
Sets the duty cycle of PWM0 (pin 6) for P0 = 2, where a value of 0x200 is a 50% duty cycle.
Before setting the line as an output:

1. Enable PWM0 output (P0 (DIO10/PWM0 Configuration) = 2).
2. Apply the settings (use CN (Exit Command mode) or AC (Apply Changes)).

The PWM period is 42.62 µs and there are 0x03FF (1023 decimal) steps within this period. When M0 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

AT commands I/O sampling commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 202

I/O sampling commands
The following AT commands configure I/O sampling parameters.

TP (Temperature)
Displays the temperature of the XBee Cellular Modem in degrees Celsius. The temperature value is
displayed in 16-bit two’s complement format. For example, 0x1A = 26 °C, and 0xF6 = -10 °C.

Parameter range
0 - 0xFF which indicates degrees Celsius displayed in 8-bit two's complement format.

Default
N/A

IS (Force Sample)
When run, IS reports the values of all of the enabled digital and analog input lines. If no lines are
enabled for digital or analog input, the command returns an error.

Command mode
In Command mode, the response value is a multi-line format, individual lines are delimited with
carriage returns, and the entire response terminates with two carriage returns. Each line is a series of
ASCII characters representing a single number in hexadecimal notation. The interpretation of the lines
is:

n Number of samples. For legacy reasons this field always returns 1.
n Digital channel mask. A bit-mask of all I/O capable pins in the system. The bits set to 1 are

configured for digital I/O and are included in the digital data value below. Pins D0 - D9 are bits 0
- 9, and P0 - P2 are bits 10 - 12.

n Analog channel mask. The bits set to 1 are configured for analog I/O and have individual
readings following the digital data field.

n Digital data. The current digital value of all the pins set in the digital channel mask, only
present if at least one bit is set in the digital channel mask.

n Analog data. Additional lines, one for each set pin in the analog channel mask. Each reading is a
10-bit ADC value for a 2.5 V voltage reference.

API operating mode
In API operating mode, IS immediately returns an OK response.
The API response is ordered identical to the Command mode response with the same fields present.
Each field is a binary number of the size listed in the following table. Multi-byte fields are in big-endian
byte order.

Field Size

Number of samples 1 byte

Digital channel mask 2 bytes

AT commands I/O sampling commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 203

Field Size

Analog chanel mask 1 byte

Samples 2 bytes each

Parameter range
N/A

Default
N/A

AT commands Sleep commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 204

Sleep commands
The following AT commands are sleep commands.

SM (Sleep Mode)
Sets or displays the sleep mode of the device.
The sleep mode determines how the device enters and exits a power saving sleep.
Sleep mode is also affected by the SO command, option bit 6. See Sleep modes for more information
about sleep modes.

Parameter range
0, 1, 4, 5

Parameter Description

0 Normal. In this mode the device never sleeps.

1 Pin Sleep. In this mode the device honors the SLEEP_RQ pin. Set D8 (DIO8/SLEEP_
REQUEST) to the sleep request function: 1.

4 Cyclic Sleep. In this mode the device repeatedly sleeps for the value specified by SP
and spends ST time awake.

5 Cyclic Sleep with Pin Wake. In this mode the device acts as in Cyclic Sleep but does
not sleep if the SLEEP_RQ pin is inactive, allowing the device to be kept awake or
woken by the connected system.

Default
0

SP (Sleep Period)
Sets or displays the time to spend asleep in cyclic sleep modes. In Cyclic sleep mode, the node sleeps
with CTS disabled for the sleep time interval, then wakes for the wake time interval.

Parameter range
0x1 - 0x83D600 (x 10 ms)

Default
0x7530 (5 minutes)

ST (Wake Time)
Sets or displays the time to spend awake in cyclic sleep modes.

Parameter range
0x1 - 0x36EE80 (x 1 ms)

Default
0xEA60 (60 seconds)

AT commands Sleep commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 205

SO (Sleep Options)
Set or read the sleep options bit field of a device. This command is a bitmask.

Parameter range
0x0 - 0xFFFF
Bit field:

Bit Setting Meaning Description

0x00 0 Connected
sleep

On compatible hardware, enters a lower power consumption
mode that maintains registration with the cellular network.
Read the HI (Hardware Identity) command to determine if the
hardware is compatible with the connected sleep feature.
If the HI command returns a value of 3, then the module is able to
use the connected sleep feature. Otherwise the hardware is not
compatible.

Set all other option bits to 0.

Default
0

AT commands Command mode options

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 206

Command mode options
The following commands are Command mode option commands.

CC (Command Sequence Character)
The character value the device uses to enter Command mode.
The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Command mode. To enter Command mode, there is also a required
period of silence before and after the command sequence characters of the Command mode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Command mode.

Parameter range
Recommended: 0x20 - 0x7F (ASCII)

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)
Sets or displays the Command mode timeout parameter. If a device does not receive any valid
commands within this time period, it returns to Idle mode from Command mode.

Parameter range
2 - 0x1770 (x 100 ms)

Default
0x64 (10 seconds)

CN (Exit Command mode)
Immediately exits Command Mode and applies pending changes.

Note Whether Command mode is exited using the CN command or by CT timing out, changes are
applied upon exit.

Parameter range
N/A

Default
N/A

GT (Guard Times)
Set the required period of silence before and after the command sequence characters of the
Command mode sequence (GT + CC + GT). The period of silence prevents inadvertently entering
Command mode.

Parameter range
0x2 - 0x576 (x 1 ms)

AT commands Command mode options

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 207

Default
0x3E8 (one second)

AT commands MicroPython commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 208

MicroPython commands
The following commands relate to using MicroPython on the XBee Cellular Modem.

PS (Python Startup)
Sets whether or not the XBee Cellular Modem runs the stored Python code at startup.

Range
0 - 1

Parameter Description

0 Do not run stored Python code at startup.

1 Run stored Python code at startup.

Default
0

PY (MicroPython Command)
Interact with the XBee Cellular Modem using MicroPython. PY is a command with sub-commands.
These sub-commands are arguments to PY.

PYB (Bundled Code Report)
You can store compiled code in flash using the os.bundle() function in the MicroPython REPL; refer to
the Digi MicroPython Programming Guide. The PYB sub-command reports details of the bundled code.
In Command mode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
bundled: 2017-05-09T15:49:44

The messages are:

n bytecode: The size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.

n bundled: A compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that the
clock was not set during compilation.

In API mode, PYB returns three 32-bit big-endian values:

n bytecode size
n bytecode hash
n timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)
PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

http://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands MicroPython commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 209

PY^ (Interrupt Program)
Sends KeyboardInterrupt to MicroPython. This is useful if there is a runaway MicroPython program
and you have filled the stdin buffer. You can enter Command mode (+++) and send ATPY^ to interrupt
the program.

Default
N/A

AT commands Firmware version/information commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 210

Firmware version/information commands
The following AT commands are firmware version/information commands.

VR (Firmware Version)
Reads the firmware version on the device.

Parameter range
0 - 0xFFFFF [read-only]

Default
Set in firmware

VL (Verbose Firmware Version)
Shows detailed version information including the application build date and time.

Parameter range
N/A

Default
Set in firmware

HV (Hardware Version)
Display the hardware version number of the device.
Read the device's hardware version. Use this command to distinguish between different hardware
platforms. The upper byte returns a value that is unique to each device type. The lower byte indicates
the hardware revision.

Parameter range
0 - 0xFFFF [read-only]

Default
Set in firmware

HS (Hardware Series)
Read the device's hardware series number.

Parameter range
N/A

Default
Set in the firmware

%C (Hardware/Software Compatibility)
Specifies what firmware is compatible with this device's hardware. Firmware images with a
compatibility value lower than the value returned by %C cannot be loaded onto the XBee.

AT commands Firmware version/information commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 211

The compatibility number for each firmware image can be found in the corresponding XCTU XML
definition file, as the compatibility_number field.

Parameter range
Read-only (programmed at manufacturing)

Default
N/A

CK (Configuration CRC)
Displays the cyclic redundancy check (CRC) of the current AT command configuration settings.

Parameter range
0 - 0xFFFFFFFF

Default
N/A

AI (Association Indication)
Reads the Association status code to monitor association progress. The following table provides the
status codes and their meanings.

Status code Meaning

0x00 Connected to the Internet.

0x22 Registering to cellular network.

0x23 Connecting to the Internet.

0x24 The cellular component is missing, corrupt, or otherwise in error. The cellular
component requires a new firmware image.

0x25 Cellular network registration denied.

0x2A Airplane mode.

0x2B USB Direct active.

0x2D Modem shut down. See SD (Shutdown).

0x2F Bypass mode active.

0x30 An upgrade is in process.

0xFF Initializing.

Parameter range
0 - 0xFF [read-only]

Default
N/A

AT commands Firmware version/information commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 212

FI (FTP OTA Update Indication)
Reports the result of the previous FTP OTA operation.

Status code Meaning

0x0 Last update succeeded.

0x1 Update file transfer failed.

0x2 Update image rejected by cellular component.

0x10 A problem processing the update request occurred.

0x11 Update was blocked by XBee sleep.

0x12 One or more update parameters were invalid.

0xFE An update is currently in progress.

0xFF No update status to report.

Parameter range
N/A

Default
N/A

FO (FTP OTA command)
The FO command allows for the initiation of a cellular component FTP OTA from an AT command
interface.
The FO command has sub-commands that either set or read a parameter, initiate the FTP OTA
(ATFOI) or clears the parameters (ATFOC).
The table below shows the FTP OTA parameters that can be set and their default values.

Note Any of the parameter commands in the table below will return ERROR if the entered parameter
is invalid or if an FTP OTA has already been initiated.

Command Parameter Default

ATFOS Server ftp1.digi.com

ATFOP Port 21

ATFOU Username anonymous

ATFOW Password fota@digi.com

ATFOD Directory support/telit

ATFOF Filename

ATFOI

AT commands Firmware version/information commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 213

ATFOI initiates an FTP OTA with the set parameters. To check the status of an initiated FTP OTA,
check ATFI to get the status of the last FTP OTA operation.
This can return ERROR immediately if there are invalid parameters set or another FTP OTA already in
progress.
ATFOC
ATFOC clears all parameters back to their defaults as listed in the table above.

Example usage
Setting a parameter

ATFOSmyftp.server.com
OK

Reading a parameter

ATFOS
myftp.server.com

Initiating FTO OTA

ATFOI
OK

AT commands Diagnostic interface commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 214

Diagnostic interface commands
The following AT commands are diagnostic interface commands.

DI (Remote Manager Indicator)
Displays the current Remote Manager status for the XBee.

Range

Value Description

0x00 Connected, but without TLS or authentication.

0x01 Before connection to the Internet.

0x02 Remote Manager connection in progress.

0x03 Disconnecting from Remote Manager.

0x04 Not configured for Remote Manager.

0x05 Connected over TLS.

0x06 Connected over TLS with authenticated server.

Default
N/A

CI (Protocol/Connection Indication)
Displays information regarding the last IP connection when using Transparent mode (AP = 0), and
when IP = 0, 1 or 4 or when IP = 2 for an SMS transmission.
The value for this parameter resets to 0xFF when the device switches between IP (IP Protocol)
modes.
When IP is set to 0, 1, or 4 (UDP, TCP, over TLS over TCP), CI resets to 0xFF when you apply changes to
any of the following settings:

n DL (Destination Address)
n DE (Destination port)
n TM (IP Client Connection Timeout)

When IP is set to 2 (SMS), CI resets to 0xFF when P# (Destination Phone Number) is changed.
The following table provides the parameter's meaning when IP = 0 for UDP connections.

Parameter Description

0x00 The socket is open.

0x01 Tried to send but could not.

0x02 Invalid parameters (bad IP/host).

AT commands Diagnostic interface commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 215

Parameter Description

0x03 TCP not supported on this cellular component.

0x10 Not registered to the cell network.

0x11 Cellular component not identified yet.

0x12 DNS query lookup failure.

0x13 Socket leak

0x20 Bad handle.

0x21 User closed.

0x22 Unknown server - DNS lookup failed.

0x23 Connection lost.

0x24 Unknown.

0xFF No known status.

The following table provides the parameter's meaning when IP = 1 or 4 for TCP connections.

Parameter Description

0x00 The socket is open.

0x01 Tried to send but could not.

0x02 Invalid parameters (bad IP/host).

0x03 TCP not supported on this cellular component.

0x10 Not registered to the cell network.

0x11 Cellular component not identified yet.

0x12 DNS query lookup failure.

0x13 Socket leak

0x20 Bad handle.

0x21 User closed.

0x22 No network registration.

0x23 No internet connection.

0x24 No server - timed out on connection.

0x25 Unknown server - DNS lookup failed.

0x26 Connection refused.

0x27 Connection lost.

AT commands Diagnostic interface commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 216

Parameter Description

0x28 Unknown.

0xFF No known status.

The following table provides the parameter's meaning when IP = 2 for SMS connections.

Parameter Description

0x00 SMS successfully sent.

0x01 SMS failed to send.

0x02 Invalid SMS parameters - check P# (Destination Phone Number).

0x03 SMS not supported.

0x10 No network registration.

0x11 Cellular component stack error.

0x12 A modem update is in-progress. Try again after its completion.

0xFF No SMS state to report (no SMS messages have been sent).

Parameter range
0 - 0xFF (read-only)

Default
-

AS (Active scan for network environment data)
Scans for mobile cells in the vicinity and returns information about the cells in the service area of the
device. When you run the command, the cell module waits until all other communication is idle and
then performs the scan.
The information that can be reported by this command varies based on the network technology of the
module that you are using.
In both AT and API mode the command returns line-based records mapping key-value pairs. The
record for the serving cell begins with the capital letter S, and keys for the fields are MCC, MNC, Area,
CID, and Signal. Each line describes a particular cell and only those values determined during a single
scan are reported.

Example

atas

S MCC:311 MNC:480 Area:48707
CID:48825632 Signal:-88
CID:48825612 Signal:-95
CID:48825603 Signal:-68
CID:48825601 Signal:-71

AT commands Diagnostic interface commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 217

Parameter range
0-1

Value Description

0 or no value Scans for mobile cells in the vicinity and returns information about the cells
in the service area of the module. When you run the command, the cell
module waits until all other communication is idle and then performs the
scan.

1 Attempts a full scan, which requires dropping network registration. Any
outstanding sockets or other activity will be lost. Since registration is lost,
no "serving cell" information is provided, as the "serving cell" that the
device will re-join cannot be reported, and there is no guarantee that the
"serving cell" the device was on before network registration was dropped
will still be used.
A full scan can return more complete information for all cells seen, which
includes cells offered by other carriers.
The duration of the scan is approximately 25 seconds.

Note This action should be used only on CAT 1 modules.

Parameter range
N/A

Default
N/A

AT commands Execution commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 218

Execution commands
The location where most AT commands set or query register values, execution commands execute an
action on the device. Execution commands are executed immediately and do not require changes to
be applied.

NR (Network Reset)
NR resets the network layer parameters. The XBee Cellular Modem tears down any TCP/UDP sockets
and resets Internet connectivity.
The XBee Cellular Modem responds immediately with an OK on the UART and then causes a network
restart.
You can also send NR, which acts like NR = 0.

Parameter range
0

Default
N/A

!R (Modem Reset)
Forces the cellular component to reboot.

CAUTION! This command is for advanced users, and you should only use it if the cellular
component becomes completely stuck while in Bypass mode. Normal users should never
need to run this command. See the FR (Force Reset) command instead.

Range
N/A

Default
N/A

AT commands File system commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 219

File system commands
To access the file system, Enter Command mode and use the following commands. All commands
block the AT command processor until completed and only work from Command mode; they are not
valid for API mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as are file
and directory names. Optional parameters are shown in square brackets ([]).
FS is a command with sub-commands. These sub-commands are arguments to FS.
For FS commands, you have to type AT before the command, for example ATFS PWD, ATFS LS and so
forth.

Error responses
If a command succeeds it returns information such as the name of the current working directory or a
list of files, or OK if there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error code
and a textual description of the error.

Note The exact content of error messages may change in the future. All errors start with a capital E,
followed by one or more uppercase letters and digits, a space, and an description of the error.
If writing your own AT command parsing code, you can determine if an FS command response is an
error by checking if the first letter of the response is capital E.

ATFS (File System)
When sent without any parameters, FS prints a list of supported commands.

ATFS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

ATFS CD directory
Changes the current working directory to directory. Prints the current working directory or an error
if unable to change to directory.

ATFS MD directory
Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

ATFS LS [directory]
Lists files and directories in the specified directory. The directory parameter is optional and defaults
to a period (.), which represents the current directory. The list ends with a blank line.
Entries start with zero or more spaces, followed by filesize or the string <DIR> for directories, then a
single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files. Secure files end with a hash mark (#) and you cannot download them.

<DIR> ./
<DIR> ../
<DIR> cert/

AT commands File system commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 220

<DIR> lib/
32 test.txt
1234 secure.bin#

ATFS PUT filename
Starts a YMODEM receive on the XBee Cellular Modem, storing the received file to filename and
ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee Cellular Modem
sends a prompt (Receiving file with YMODEM...) when it is ready to receive, at which point you
should initiate a YMODEM send in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

ATFS XPUT filename
Similar to the PUT command, but stores the file securely on the XBee Cellular Modem. See Secure
files for details on what this means.
If the command is incorrect, the reply will be an error as described in Error responses.

ATFS HASH filename
Print a SHA-256 hash of a file to allow for verification against a local copy of the file.

n On Windows, you can generate a SHA-256 hash of a file with the command certutil -hashfile
test.txt SHA256.

n On Mac and Linux use shasum -b -a 256 test.txt.

ATFS GET filename
Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee Cellular
Modem sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you should initiate
a YMODEM receive in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

ATFS MV source_path dest_path
Moves or renames the selected file or directory source_path to the new name or location dest_
path. This command fails with an error if source_path does not exist, or dest_path already exists.

Note Unlike a computer's command prompt which moves a file into the dest_path if it is an existing
directory, you must specify the full name for dest_path.

ATFS RM file_or_directory
Removes the file or empty directory specified by file_or_directory. This command fails with an error
if file_or_directory does not exist, is not empty, refers to the current working directory or one of its
parents.

ATFS INFO
Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The report
ends with a blank line, as with most multi-line AT command output. Example output:

AT commands File system commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 221

204800 used
695296 free

0 bad
900096 total

ATFS FORMAT confirm
Reformats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee Cellular Modem responds with Formatting..., adds a
period every second until the format is complete and ends the response with a carriage return.

AT commands Remote Manager commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 222

Remote Manager commands
The following commands are used with Remote Manager.

MO (Remote Manager Options)
Configures the connection to Remote Manager.

Note When bit 0 is set to 0, you should manage the Remote Manager keepalive interval, which may
otherwise result in excessive data usage. See Configure Remote Manager keepalive interval.

Parameter range
0 - 7

Bit Description

0 Maintains a persistent TCP connection to Remote Manager.

1 TCP connection uses TLS. This is the default.

2 Reserved for future use.

Default
6 (Bits 1 and 2 are enabled by default.)

DF (Remote Manager Status Check Interval)
Defines the number of minutes between polls for Remote Manager activity.

Parameter range
1 to 0x10E0

Default
1440

EQ (Remote Manager FQDN)
Sets or display the fully qualified domain name of the Remote Manager server.

Range
From 0 through 63 ASCII characters.

Default
my.devicecloud.com

K1 (Remote Manager Server Send Keepalive)
Specify the Remote Manager Server Send Transmit Keepalive Interval value in seconds. The XBee
device considers a Remote Manager connection to have failed after 3 missed keepalives.
This command works with the K2 command to limit data usage. See Configure Remote Manager
keepalive interval.

AT commands Remote Manager commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 223

Note Changing this value causes any currently active Remote Manager connections to be closed and
recreated.

Parameter range
10 - 7200 (x 1 s)

Default
75

K2 (Remote Manager Device Send Keepalive)
Specify the Remote Manager Device Send Transmit Keepalive Interval value in seconds. The Remote
Manager considers a connection to have failed after 3 missed keepalives.
This command works with the K1 command to limit data usage. See Configure Remote Manager
keepalive interval.

Note Changing this value causes any currently active Remote Manager connections to be closed and
recreated.

Parameter range
10 - 7200 (x 1 s)

Default
60

$D (Remote Manager certificate)
Defines the TLS Remote Manager certificate.

Parameter range
N/A

Default
/flash/cert/digi-remote-mgr.pem

ER (Remote Manager TCP Port Override)
Use this command to specify a TCP port other than the default Remote Manager TCP port. The
defaults are 0xC7D when unencrypted and 0xC7F when TLS is enabled.

n Value is 0: The default Remote Manager TCP port is used.
n Value is non-zero: Specify the TCP port that should be used. The default Remote Manager

TCP port is overridden.

Parameter range
0x0 - 0xFFFF

Default
0x0

AT commands Remote Manager commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 224

ES (Remote Manager UDP Port Override)
Use this command to specify a UDP port other than the default Remote Manager UDP port.

n Value is 0: The default Remote Manager UDP port is used.
n Value is non-zero: Specify the UDP port that should be used. The default Remote Manager

UDP port is overridden. The default UDP port is 0xCE1.

Parameter range
0x0 - 0xFFFF

Default
0x0

MT (Remote Manager Idle Timeout)
Specify the length of time (in minutes) that a TCP connection to Remote Manager can be idle. When
the time limit is met the TCP connection is closed.
For example, you can use this command to adjust the desired timeout when a TCP connection is used
without a persistent connection to Remote Manager. This command can be used in conjunction with
devices that use SM/UDP or SM/SMS and scheduled tasks within Remote Manaer after a request
connect task is performed to connect on demand. For more information on situations where this
command applies, see Configure Remote Manager features by scheduling tasks.
This command works in conjunction with the MO command. If MO bit 0 is set (to maintain a persistent
TCP connection to Remote Manager), the configuration for the MT command is ignored.

Parameter range
0x1 - 0x5A0

Default
0xA

AT commands System commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 225

System commands
The following commands are used to assign descriptors to the XBee Cellular Modem, which distinguish
the devices from each other in Remote Manager.

KL (Device Location)
Sets or displays a user-defined physical location for the XBee displayed in Remote Manager.

Range
Up to 20 ASCII characters

Default
One ASCII space character (0x20).

KC (Contact Information)
Sets or displays user-defined contact information for the XBee displayed in Remote Manager.

Range
Up to 20 ASCII characters

Default
One ASCII space character (0x20).

KP (Device Description)
Sets or displays a user-defined description for the XBee displayed in Remote Manager.

Range
Up to 20 ASCII characters

Default
One ASCII space character (0x20)

AT commands Socket commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 226

Socket commands
The following AT commands are socket commands.

SI (Socket Info)
Lists either information about a given socket or lists the socket IDs of all active (open) sockets on the
modem in a human-readable format.
When the SI command is issued without a parameter, the XBee outputs a list of socket IDS in hex,
separated by carriage returns (<CR>). After the last socket ID has been printed the list is terminated
with an additional carriage return.
In both API and command mode the payload (output) will have the following format:

ID<CR>
ID<CR>
. . .
ID<CR>
<CR>

In the list of socket IDs, an asterisk (*) displays after the socket ID for non-Extended API Sockets
(which are sockets created implicitly when using IPv4 TX API frames). In the example below, the 0x00
socket is an IPv4 TX/RX socket, and the 0x01 and 0x02 sockets are both Extended API sockets. The
socket IDs are displayed in ascending order, from smallest socket value to the largest.

0x00*
0x01
0x02

Note When sending AT commands for API frames it is standard to send the command as ASCII text
and the parameters for that command as binary.

When the SI command is issued with a socket ID, specified in hex, the response is a list of information
about the socket. The list is separated by carriage returns (<CR>) and terminated with an additional
carriage return.
In both API and command mode the payload/output will have the following format:

ID<CR>
STATE<CR>
PROTOCOL<CR>
LOCAL_PORT<CR>
REMOTE_PORT<CR>
REMOTE_ADDRESS<CR>
<CR>

Field Description

ID The socket ID.

AT commands Socket commands

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 227

Field Description

STATE The state of the socket:

n ALLOCATED
n CONNECTING
n CONNECTED
n LISTENING
n BOUND
n CLOSING

PROTOCOL The protocol of the socket:

n UDP
n TCP
n TLS

LOCAL_PORT The local port of the socket. This is 0 unless the socket is
explicitly bound to a port.

REMOTE_PORT The remote port of the socket.

REMOTE_ADDRESS The remote IPv4 address for the given socket. This is 0.0.0.0 for
an unconnected socket.

Parameter range
0x00 - 0xFE

Default
-

Operate in API mode

API mode overview 229
Use the AP command to set the operation mode 229
API frame format 229

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 228

Operate in API mode API mode overview

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 229

API mode overview
As an alternative to Transparent operating mode, you can use API operating mode. API mode provides
a structured interface where data is communicated through the serial interface in organized packets
and in a determined order. This enables you to establish complex communication between devices
without having to define your own protocol. The API specifies how commands, command responses
and device status messages are sent and received from the device using the serial interface or the
SPI interface.
We may add new frame types to future versions of firmware, so build the ability to filter out additional
API frames with unknown frame types into your software interface.

Use the AP command to set the operation mode
Use AP (API Enable) to specify the operation mode:

AP command
setting Description

AP = 0 Transparent operating mode, UART serial line replacement with API modes
disabled. This is the default option.

AP = 1 API operation.

AP = 2 API operation with escaped characters (only possible on UART).

AP = 3 N/A

AP = 4 MicroPython REPL

AP = 5 Bypass mode. This mode is for direct communication with the underlying chip and
is only for advanced users.

The API data frame structure differs depending on what mode you choose.

API frame format
An API frame consists of the following:

n Start delimeter
n Length
n Frame data
n Checksum

API operation (AP parameter = 1)
This is the recommended API mode for most applications. The following table shows the data frame
structure when you enable this mode:

Operate in API mode API frame format

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 230

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte

Frame data 4 - number (n) API-specific structure

Checksum n + 1 1 byte

Any data received prior to the start delimiter is silently discarded. If the frame is not received correctly
or if the checksum fails, the XBee replies with a radio status frame indicating the reason for the
failure.

API operation with escaped characters (AP parameter = 2)
Setting API to 2 allows escaped control characters in the API frame. Due to its increased complexity,
we only recommend this API mode in specific circumstances. API 2 may help improve reliability if the
serial interface to the device is unstable or malformed frames are frequently being generated.
When operating in API 2, if an unescaped 0x7E byte is observed, it is treated as the start of a new API
frame and all data received prior to this delimiter is silently discarded. For more information on using
this API mode, see the Escaped Characters and API Mode 2 in the Digi Knowledge base.
API escaped operating mode works similarly to API mode. The only difference is that when working in
API escaped mode, the software must escape any payload bytes that match API frame specific data,
such as the start-of-frame byte (0x7E). The following table shows the structure of an API frame with
escaped characters:

Frame fields Byte Description

Start
delimiter

1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant
Byte

Characters escaped if
needed

Frame data 4 - n API-specific structure

Checksum n + 1 1 byte

Start delimiter field
This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily detect a
new incoming frame.

Escaped characters in API frames
If operating in API mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte to
be escaped (XORed with 0x20).
The following data bytes need to be escaped:

n 0x7E: start delimiter
n 0x7D: escape character

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

Operate in API mode API frame format

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 231

n 0x11: XON
n 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).
2. Append it with the byte you want to escape, XORed with 0x20.

In API mode with escaped characters, the length field does not include any escape characters in the
frame and the firmware calculates the checksum with non-escaped data.

Example: escape an API frame
To express the following API non-escaped frame in API operating mode with escaped characters:

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

1. Insert a 0x7D.
2. XOR byte 0x13 with 0x20: 13 ⊕ 20 = 33

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It does
not include the checksum field.

Length field
The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data
This field contains the information that a device receives or will transmit. The structure of frame data
depends on the purpose of the API frame:

Start delimiter Length

Frame data

ChecksumFrame type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API frame type Data Single byte

n Frame type is the API frame type identifier. It determines the type of API frame and indicates
how the Data field organizes the information.

n Data contains the data itself. This information and its order depend on the what type of frame
that the Frame type field defines.

Operate in API mode API frame format

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 232

Multi-byte values are sent big-endian.

Calculate and verify checksums
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter 0x7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from 0xFF.

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. If the checksum is correct, the last two digits on the far right of the sum equal 0xFF.

Example
Consider the following sample data packet: 7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8+

Byte(s) Description

7E Start delimiter

00 0A Length bytes

01 API identifier

01 API frame ID

50 01 Destination address low

00 Option byte

48 65 6C 6C 6F Data packet

B8 Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and the
length (the second and third bytes):
7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8
Add these hex bytes:
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F = 247
Now take the result of 0x247 and keep only the lowest 8 bits which in this example is 0xC4 (the two
far right digits). Subtract 0x47 from 0xFF and you get 0x3B (0xFF - 0xC4 = 0x3B). 0x3B is the checksum
for this data packet.
If an API data packet is composed with an incorrect checksum, the XBee Cellular Modem will consider
the packet invalid and will ignore the data.
To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F + B8 = 2FF

API frames

The following sections describe the API frames.

AT Command - 0x08 234
AT Command: Queue Parameter Value - 0x09 235
Transmit (TX) SMS - 0x1F 236
Transmit (TX) Request: IPv4 - 0x20 237
Tx Request with TLS Profile - 0x23 239
AT Command Response - 0x88 241
Transmit (TX) Status - 0x89 242
Modem Status - 0x8A 244
Receive (RX) Packet: SMS - 0x9F 245
Receive (RX) Packet: IPv4 - 0xB0 246
User Data Relay - 0x2D 247
User Data Relay Output - 0xAD 248
FW Update - 0x2B 249
FW Update Response - 0xAB 250
Socket Create - 0x40 251
Socket Create Response - 0xC0 252
Socket Option Request - 0x41 253
Socket Option Response - 0xC1 254
Socket Connect - 0x42 255
Socket Connect Response - 0xC2 256
Socket Close - 0x43 257
Socket Close Response - 0xC3 258
Socket Send (Transmit) - 0x44 259
Socket SendTo (Transmit Explicit Data): IPv4 - 0x45 260
Socket Bind/Listen - 0x46 261
Socket Listen Response - 0xC6 262
Socket New IPv4 Client - 0xCC 263
Socket Receive - 0xCD 264
Socket Receive From: IPv4 - 0xCE 265
Socket Status - 0xCF 266

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 233

API frames AT Command - 0x08

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 234

AT Command - 0x08

Description
Use this frame to query or set parameters on the local device. Changes this frame makes to device
parameters take effect after executing the AT command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0x08 Byte

Frame ID Byte Identifies the data frame for the host to correlate with a
subsequent ACK. If set to 0, the device does not send a response.

AT
command

Byte Command name: two ASCII characters that identify the AT
command.

Parameter
value

Byte If present, indicates the requested parameter value to set the
given register. If no characters are present, it queries the register.

API frames AT Command: Queue Parameter Value - 0x09

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 235

AT Command: Queue Parameter Value - 0x09

Description
This frame allows you to query or set device parameters. In contrast to AT Command - 0x08, this
frame queues new parameter values and does not apply them until you issue either:

n The AT Command (0x08) frame
n The AC command

When querying parameter values, the 0x09 frame behaves identically to the 0x08 frame. The device
returns register queries immediately and not does not queue them. The response for this command is
also an AT Command Response frame (0x88).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0x09 Byte

Frame ID Byte Identifies the data frame for the host to correlate with a
subsequent ACK. If set to 0, the device does not send a response.

AT
command

Byte Command name: two ASCII characters that identify the AT
command.

Parameter
value

Byte If present, indicates the requested parameter value to set the
given register. If no characters are present, it queries the register.

API frames Transmit (TX) SMS - 0x1F

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 236

Transmit (TX) SMS - 0x1F

Description
Transmit an SMS message. The frame allows international numbers with or without the + prefix. If you
omit + and are dialing internationally, you need to include the proper International Dialing Prefix for
your calling region, for example, 011 for the United States.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0x1F Byte

Frame ID Byte Reference identifier used to match status
responses. 0 disables the TX Status frame.

Options Byte Reserved for future use.

Phone
number

20 byte string String representation of phone number
terminated with a null (0x0) byte. Use numbers
and the + symbol only, no other symbols or
letters.

Payload Variable
(160 characters
maximum)

Data to send as the body of the SMS message.

API frames Transmit (TX) Request: IPv4 - 0x20

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 237

Transmit (TX) Request: IPv4 - 0x20

Description
A TX Request message causes the device to transmit data in IPv4 format. A TX request frame for a
new destination creates a network socket. After the network socket is established, data from the
network that is received on the socket is sent out the device's serial port in the form of a Receive (RX)
Packet frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x20 Byte

Frame ID Byte Reference identifier used to match status responses. 0
disables the TX Status frame.

Destination
address

32-bit big
endian

Destination port 16-bit
big endian

Source port 16-bit
big endian

If the source port is 0, the device attempts to send the
frame data using an existing open socket with a
destination that matches the destination address and
destination port fields of this frame. If there is no
matching socket, then the device attempts to open a
new socket.
If the source port is non-zero, the device attempts to
send the frame data using an existing open socket with
a source and destination that matches the source port,
destination address, and destination port fields of this
frame. If there is no matching socket, it returns an
error.

Protocol Byte 0 = UDP
1 = TCP
4 = SSL over TCP

API frames Transmit (TX) Request: IPv4 - 0x20

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 238

Field name
Field
value Data type Description

Transmit options Byte bitfield Bit fields are offset 0
Bit field 0 - 7. Bits 0, and 2-7 are reserved, bit 1 is not.
BIT 1 =
1 - Terminate the TCP socket after transmission is
complete
0 - Leave the socket open. Closed by timeout, see TM
(IP Client Connection Timeout).
Ignore this bit for UDP packets.
All other bits are reserved and should be 0.

Payload Variable Data to be transferred to the destination, may be up to
1500 bytes.

API frames Tx Request with TLS Profile - 0x23

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 239

Tx Request with TLS Profile - 0x23

Description
The frame gives greater control to the application over the TLS settings used for a connection.
A TX Request with TLS Profile frame implies the use of TLS and behaves similar to the TX Request
(0x20) frame, with the protocol field replaced with a TLS Profile field to choose from the profiles
configured with the $0, $1, and $2 configuration commands.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x23 Byte

Frame ID Byte Reference identifier used to match status responses. 0
disables the TX Status frame.

Destination
address

32-bit big
endian

Destination port 16-bit
big endian

Source port 16-bit
big endian

If the source port is 0, the device attempts to send the
frame data using an existing open socket with a
destination that matches the destination address and
destination port fields of this frame. If there is no
matching socket, then the device attempts to open a
new socket.
If the source port is non-zero, the device attempts to
send the frame data using an existing open socket with
a source and destination that matches the source port,
destination address, and destination port fields of this
frame. If there is no matching socket, the TX Status
frame returns an error.

TLS profile Byte Zero-indexed number that indicates the profile as
specified by the corresponding $<num> command.

API frames Tx Request with TLS Profile - 0x23

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 240

Field name
Field
value Data type Description

Transmit options Byte bitfield Bit fields are offset 0
Bit field 0 - 7. Bits 0, and 2-7 are reserved, bit 1 is not.
BIT 1 =
1 - Terminate the TCP socket after transmission is
complete
0 - Leave the socket open. Closed by timeout, see TM
(IP Client Connection Timeout).
Ignore this bit for UDP packets.
All other bits are reserved and should be 0.

Payload Variable Data to be transferred to the destination, may be up to
1500 bytes.

API frames AT Command Response - 0x88

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 241

AT Command Response - 0x88

Description
A device sends this frame in response to an AT Command (0x08) frame. Some commands send back
multiple frames.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0x88 Byte

Frame ID Byte Identifies the data frame for the host to correlate with a
subsequent ACK. If set to 0, the device does not send a response.

AT
command

Byte Command name: two ASCII characters that identify the AT
command.

Status ## Byte 0 = OK
1 = ERROR
2 = Invalid command
3 = Invalid parameter

Parameter
value

Byte Register data in binary format. If the register was set, then this
field is not returned.

API frames Transmit (TX) Status - 0x89

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 242

Transmit (TX) Status - 0x89

Description
Indicates the success or failure of a transmit operation.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0x89 Byte

Frame ID Byte Refers to the frame ID specified in a previous transmit
frame

Status Byte Status code (see the table below)

The following table shows the status codes.

Code Description

0x0 Successful transmit

0x20 Connection not found

0x21 Failure to transmit to cell network

0x22 Not registered to cell network

0x2c Invalid frame values (check the phone number)

0x31 Internal error

0x32 Resource error (retry operation later).
See Socket limits in API mode for more information.

0x74 Message too long

0x76 Socket closed unexpectedly

0x78 Invalid UDP port

0x79 Invalid TCP port

0x7A Invalid host address

0x7B Invalid data mode

0x7C Invalid interface. See User Data Relay - 0x2D.

API frames Transmit (TX) Status - 0x89

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 243

Code Description

0x7D Interface not accepting frames. See User Data Relay - 0x2D.

0x7E A modem update is in progress. Try again after the update is complete.

0x80 Connection refused

0x81 Socket connection lost

0x82 No server

0x83 Socket closed

0x84 Unknown server

0x85 Unknown error

0x86 Invalid TLS configuration (missing file, and so forth)

0x87 Socket not connected

0x88 Socket not bound

API frames Modem Status - 0x8A

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 244

Modem Status - 0x8A

Description
Cellular component status messages are sent from the device in response to specific conditions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0x8A Byte

Status ## Byte 0 = Hardware reset or power up
1 = Watchdog timer reset
2 = Registered with cellular network
3 = Unregistered with cellular network
0x0E = Remote Manager connected
0x0F = Remote Manager disconnected
0x35 = Cellular component update started
0x36 = Cellular component update failed
0x37 = Cellular component update completed
0x38 = XBee firmware update started
0x39 = XBee firmware update failed
0x3A = XBee firmware update applying

API frames Receive (RX) Packet: SMS - 0x9F

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 245

Receive (RX) Packet: SMS - 0x9F

Description
This XBee Cellular Modem uses this frame when it receives an SMS message.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field
name

Field
value Data type Description

Frame
Type

0x9F Byte

Phone
number

20 byte
string

String representation of the phone number, padded out with
null bytes (0x0).

Payload Variable Body of the received SMS message.

API frames Receive (RX) Packet: IPv4 - 0xB0

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 246

Receive (RX) Packet: IPv4 - 0xB0

Description
The XBee Cellular Modem uses this frame when it receives RF data on a network socket that is
created by a TX request frame or configuring C0 (Source Port).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0xB0

IPv4 32-bit source
address

MSB 4 The address in the example below is for a source address of
192.168.0.104.
32-bit big endian.5

6

7

16-bit destination port MSB 8 The port that the packet was received on.
16-bit big endian.

LSB 9

16-bit source port MSB 10 The port that the packet was sent from.
16-bit big endian.

LSB 11

Protocol MSB 12 0 = UDP
1 = TCP
4 = SSL over TCP

Status 13 Reserved

Payload 14 Data received from the source. The maximum size is 1500
bytes.

15

16

17

18

API frames User Data Relay - 0x2D

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 247

User Data Relay - 0x2D

Description
Allows for data to be sent to an interface with a designation of a target interface for the data to be
output on. The frame can be sent or received from either of these interfaces: MicroPython (internal
interface) or UART. This frame is used in conjunction with User Data Relay Output - 0xAD.
You can send and receive User Data Relay Frames from MicroPython. See Send and receive User Data
Relay frames in the MicroPython Programming Guide.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0x2D Byte

Frame ID Reference identifier used to match TX Status frames (type
0x89) sent for errors. A value of 0 disables the TX Status frame.

Destination
interface

Byte 0 = Serial port (SPI, or UART when in API mode)
2 = MicroPython

Data Variable

Error cases
The Frame ID is used to report error conditions in a method consistent with existing transmit frames.
The error codes are mapped to statuses. The following conditions result in an error that is reported in
a TX Status frame, referencing the frame ID from the 0x2d request.

n Invalid interface (0x7c) : The user specified a destination interface that does not exist.

Example use cases
An external processor outputs the Frame over the UART with the Micropython interface as a target.
Micropython operates over the data and publishes the data to mqtt topic.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm

API frames User Data Relay Output - 0xAD

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 248

User Data Relay Output - 0xAD

Description
Allows for data to be received on an interface with a designation of the target interface for the data to
be output on. The frame can be sent or received from any of the following interfaces: MicroPython
(internal interface) or UART. This frame is used in conjunction with User Data Relay - 0x2D.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xAD Byte

Source interface Byte 0 = Serial port (SPI, or UART
when in API mode)
2 = MicroPython

Data Variable

API frames FW Update - 0x2B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 249

FW Update - 0x2B

Description
Use this frame to send Cellular component firmware updates.

Format
The following table provides the contents of the frame.

Frame data
fields Offset Type Description

ID 1 uint8 Will be matched in response. Typically starts at 0, but may start
at any number and it must increment with each successive
frame (modulo 256).

Component
identifier

2 uint8 Set to zero, may be used in the future to identify the target
component.

Flags 3 uint8 Bit mask of values indicating various status:
bit 0 (0x01) - Initial request.
bit 1 (0x02) - Final request (File fully transferred).
bit 2 (0x04) - Cancel request (Used to abort an update in
progress).

Payload 4 multi-
byte

Next section of file being transferred.

API frames FW Update Response - 0xAB

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 250

FW Update Response - 0xAB

Description
This frame is read from the module and it provides the status for each 0x2B frame sent.

Format
The following table provides the contents of the frame.

Frame data fields Offset Type Description

ID 1 uint8 Value from request payload.

Status 2 uint8 Enumeration of status values:
0 - Success
>0 - errors

n 1 - Operation cancelled
n 2 - Update in progress
n 3 - Update not started
n 4 - Sequence error
n 5 - Internal error
n 6 - Resource error

API frames Socket Create - 0x40

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 251

Socket Create - 0x40

Description
Use this frame to create a new socket with the following protocols: TCP, UDP, or TLS.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field
name

Field
value

Data
type Description

Frame
type

0x40 Byte

Frame ID Byte Reference identifier used to match status responses.
A response is required and will be sent regardless of the
frame ID.

Protocol Byte 0 = UDP
1 = TCP
4 = SSL over TCP

API frames Socket Create Response - 0xC0

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 252

Socket Create Response - 0xC0

Description
The device sends this frame in response to a Socket Create (0x40) frame. It contains a socket ID that
should be used for future transactions with the socket and a status field.
If the status field is non-zero, which indicates an error, the socket ID will be set to 0xFF and the socket
will not be opened.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value

Data
type Description

Frame type 0xC0 Byte

Frame ID Byte A reference identifier used to match status
responses.

Socket ID Byte A unique socket ID to address the socket. This field
is 0xFF if the value in the status field is non-zero.

Status Byte Status code. See table below.

The following table shows the status codes.

Code Description

0x0 Successful open

0x22 Not registered to cell network

0x31 Internal error

0x32 Resource error: retry the operation later
See Socket limits in API mode.

0x7B Invalid protocol

0x7E A modem update is in process. Try again after its completion.

0x85 Unknown error

0x86 Invalid TLS configuration

API frames Socket Option Request - 0x41

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 253

Socket Option Request - 0x41

Description
Use this frame to modify the behavior of sockets to change their behavior to be different than the
normal default behavior. If the Option Data field is zero-length the request acts as a query, and the
Socket Option Response frame (0xC1) reports the current effective value.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x41 Byte

Frame ID Byte A reference identifier used to match status
responses. Requests made with Frame ID 0 will not
send a response.

Socket ID Byte The socket ID to modify.

Option ID Byte Identifier of the parameter to change.

Option Data Variable Variable length field based on option type. If zero
length, the current effective value will be returned in
the response frame.

Options

Option ID Option Name Data Type Default Value Description

0x00 TLS Profile Byte 0x00 Determines the TLS
profile to be used:
$0 - $2. This is valid
only for TLS sockets.

API frames Socket Option Response - 0xC1

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 254

Socket Option Response - 0xC1

Description
Reports the status of requests made with the Socket Option Request (0x41) frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0xC1 Byte

Frame ID Byte Identifier provided in request.

Socket ID Byte The socket ID for which modification was
requested.

Option ID Byte Identifier of the parameter requested.

Status Byte 0x00: Success
0x01: Invalid parameters
0x02: Failed to retrieve option value
0x20: Bad socket ID

Option Data Variable Current effective value of the option. This
field is only present if the corresponding
request was a query (empty value).

API frames Socket Connect - 0x42

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 255

Socket Connect - 0x42

Description
Use this frame to connect a socket to the given address and port.
For a UDP socket, this filters out any received responses that are not from the specified remote
address and port.
Two frames occur in response:

1. Socket Connect Response frame: Arrives immediately and confirms the request.
2. Socket Status frame: Indicates if the connection was successful.

It is not permitted to proceed transmitting data on this socket until after a Socket Status frame has
been received, indicating success.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x42 Byte

Frame ID Byte A reference identifier used to match
status responses. If set to 0, the device
does not send a response.

Socket ID Byte ID of the socket to connect.

Destination port 16-bit big endian

Destination
address type

Byte 0: Indicates the destination address
field is a binary IPv4 address in network
byte order.
1: Indicates the destination address
field is a string containing either a
dotted quad value or a domain name to
be resolved.

Destination
address

Variable

API frames Socket Connect Response - 0xC2

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 256

Socket Connect Response - 0xC2

Description
The device sends this frame in response to a Socket Connect (0x42) frame. The frame contains a
status regarding the initiation of the connect.
It is not permitted to proceed transmitting data on this socket until after a Socket Status frame has
been received, indicating success.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xC2 Byte

Frame ID Byte A reference identifier used to match status responses.

Socket ID Byte ID of the socket that will be connected.

Status Byte Status code. See the table below.

The following table shows the status codes.

Code Description

0x00 Successfully started the connection process

0x01 Invalid destination address type

0x02 Invalid parameter: address or port

0x03 Connection already in progress

0x04 Already connected

0x05 Socket Connect is not allowed on this socket. The
socket is closed, closing, or in a bound/listening
state.

0x20 Invalid socket ID

API frames Socket Close - 0x43

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 257

Socket Close - 0x43

Description
Use this frame to close an Extended API socket with a specified Socket ID or to close all currently
open Extended API sockets.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x43 Byte

Frame ID Byte A reference identifier used to match status
responses. If set to 0, the device does not
send a response.

Socket ID Byte The following options can be used:

n ID of the socket to be closed.
n 0xFF: Close all Extended API sockets

that are currently open.

API frames Socket Close Response - 0xC3

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 258

Socket Close Response - 0xC3

Description
The device sends this frame in response to a Socket Connect (0x43) frame. Since a close will always
succeed for a socket that exists, the status can be only one of two values: Success or Bad socket ID.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xC3 Byte

Frame ID Byte A reference identifier used to match status responses.

Socket ID Byte ID of the socket that has been closed.

Status Byte 0x00 = Success
0x20 = Bad socket ID

API frames Socket Send (Transmit) - 0x44

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 259

Socket Send (Transmit) - 0x44

Description
A Socket Send message causes the device to transmit data using the current connection. For a non-
zero frame ID, this will elicit a Transmit (TX) Status - 0x89 frame.
This frame requires a successful Socket Connect - 0x42 frame first. For a socket that is not connected,
the device responds with a Transmit (TX) Status - 0x89 frame with an error. To send data from a
UDP socket that is not connect, use a Socket SendTo - 0x45 frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x44 Byte

Frame ID Byte A reference identifier used to match
status responses. If set to 0, the
Transmit (TX) Status - 0x89 frame is
disabled.

Socket ID Byte ID of the socket to send on.

Transmit options Byte bit-field Reserved

Payload Variable Data to be transferred to the
destination, up to 1500 bytes.

API frames Socket SendTo (Transmit Explicit Data): IPv4 - 0x45

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 260

Socket SendTo (Transmit Explicit Data): IPv4 - 0x45

Description
A Socket SendTo (Transmit Explicit Data) message causes the device to transmit data using an IPv4
address and port. For a non-zero frame ID, this will elicit a Transmit (TX) Status - 0x89 frame.
If this frame is used with a TCP, SSL, or a connected UDP socket, the address and port fields are
ignored.
You must perform a Socket Bind/Listen - 0x46 frame for a UDP connection before you attempt a
SendTo in order to assign a source port.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x45 Byte

Frame ID Byte A reference identifier
used to match status
responses. If set to 0,
the Transmit
(TX) Status - 0x89 frame
is disabled.

Socket ID Byte ID of the socket to send
on.

Destination address 32-bit big endian

Destination port 16-bit big endian

Transmit options Byte bit-field Reserved

Payload Variable Data to be transferred
to the destination, up to
1500 bytes.

API frames Socket Bind/Listen - 0x46

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 261

Socket Bind/Listen - 0x46

Description
Opens a listener socket that listens for incoming connections.
When there is an incoming connection on the listener socket, a Socket New IPv4 Client - 0xCC frame is
sent, indicating the socket ID for the new connection along with the remote address information.
For a UDP socket, this frame binds the socket to a given port. A bound UDP socket can receive data
with a Socket Receive From: IPv4 - 0xCE frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0x46 Byte

Frame ID Byte A reference identifier used to match status
responses. If set to 0, the device does not
send a response.

Socket ID Byte The socket ID to listen on.

Source port 16-bit big endian The port to listen on.

API frames Socket Listen Response - 0xC6

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 262

Socket Listen Response - 0xC6

Description
The device sends this frame in response to a Socket Bind/Listen (0x46) frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name
Field
value Data type Description

Frame type 0xC6 Byte

Frame ID Byte Resource identifier used to match
status responses.

Socket ID Byte The socket ID of the socket that has
started listening.

Status Byte Status code. See table below.

The following table shows the status codes.

Code Description

0x00 Success

0x01 Invalid port

0x02 Error

0x03 Already bound or listening

0x20 Invalid socket ID

API frames Socket New IPv4 Client - 0xCC

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 263

Socket New IPv4 Client - 0xCC

Description
The XBee Cellular modem generates this frame when an incoming connection is accepted on a
listener socket.
This frame contains the original listener's socket ID and a new socket ID of the incoming connection,
along with the connection's remote address information.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xCC Byte

Socket ID Byte The socket ID of the listener socket.

Client Socket ID Byte The socket ID of the new connection.

Remote address 32-bit big endian

Remote port 16-bit big endian

API frames Socket Receive - 0xCD

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 264

Socket Receive - 0xCD

Description
The XBee Cellular modem uses this frame when it receives RF data on the specified socket.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xCD Byte

Frame ID Byte (Optional) This field allows for
solicited reads to be in the future.

Socket ID Byte ID of the socket that the data has
been received on.

Status Byte bit-field Reserved

Payload Variable Data received from the
destination. It may be up to 1500
bytes.

API frames Socket Receive From: IPv4 - 0xCE

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 265

Socket Receive From: IPv4 - 0xCE

Description
The XBee cellular modem uses this frame when it receives RF data on the specified socket. This frame
is sent only for UDP sockets that have not used a Socket Connect - 0x42 frame to connect, providing
addressing information about the source.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Field value Data type Description

Frame type 0xCE Byte

Frame ID Byte Optional: This field allows for
solicited reads to be in the future.

Socket ID Byte ID of the socket that the data has
been received on.

Source address 32-bit big endian

Source port 16-bit big endian

Status Byte bit-field Reserved

Payload Variable Data to be transferred to the
destination, up to 1500 bytes.

API frames Socket Status - 0xCF

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 266

Socket Status - 0xCF

Description
This frame is sent out the device's serial port to indicate the state related to the socket.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field name Size Description

Frame type 1 Socket Status frame type (0xCF)

Socket ID 1 Socket ID for status reported

Status 1 0x00 = Connected
All values other than 0x00 = Connected are fatal and the
Socket ID is closed and invalid after receipt.

0x01 = Failed DNS lookup
0x02 = Connection refused
0x03 = Transport closed
0x04 = Timed out
0x05 = Internal error
0x06 = Host unreachable
0x07 = Connection lost
0x08 = Unknown error
0x09 = Unknown server
0x0A = Resource error

File system API frames

Local File System Request - 0x3B 268
Local File System Response - 0xBB 285

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 267

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 268

Local File System Request - 0x3B

Description
Access the XBee module's file system.
The frame content varies based on the File System Command sent in the request. Payloads for each
command and their respective responses are included.
For more information about the file system, see File system.

Note The XBee modules responds to these requests with Local File System Response - 0xBB.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Local File System Request - 0x3B

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response. If set to 0, the device will not emit a
response frame.

5 8-bit File System
Command

See File System Commands for valid command values.

6-n variable Request
Parameters

Variable content based on File System Command.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

File System Commands

Value Command

0x01 File Open

0x02 File Close

0x03 File Read

0x04 File Write

0x08 File Hash

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 269

Value Command

0x10 Directory Create

0x11 Directory Open

0x12 Directory Close

0x13 Directory Read

0x1C Get Path ID

0x21 Rename

0x2F Delete

0x40 Volume Info

0x4F Volume Format

Notes

n Multiple commands take a 16-bit Path ID, which allows the use of relative pathnames (using
"/" as the path separator and using ".." to refer to a parent directory) as command
parameters. The default of 0x0000 refers to the root directory (/). See the Get Path ID - 0x1C
command for details on creation and use of temporary values in order to use relative
pathnames.

n For the Directory Open and Get Path ID commands, using an empty Pathname field is
equivalent to using "." – both refer to the directory designated by the Path ID.

n Request and Success Response describe the frame contents starting with the File System
Command field (and excluding the Checksum field).

n Success Response lists the fields following the Status byte when 0 (indicating a successful
operation), and is only listed for commands with additional fields after the Status byte.

n See Local File System Response - 0xBB for non-zero (error) Status values in the Response.
n Variable-length names are NOT null terminated. The frame length determines the length of the

field.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 270

File Open - 0x01

Description
Open a file for reading and/or writing.

n Requests must have at least READ or WRITE bit set in the Options field.
n Use the SECURE bit (0x80) of the Options byte to upload a write-only file (one that cannot be

downloaded or viewed). This is useful for protecting MicroPython source code on the device.
n The SECURE bit is only valid when also setting the WRITE bit and either creating a new file

(CREATE + EXCLUSIVE) or replacing an existing file (TRUNCATE).

Request

Offset Size Frame Field Description

5 8-bit File System Command File Open - 0x01

6 16-bit Path ID See Get Path ID - 0x1C for a description.

8 8-bit Options Bitfield with the following values:

n 0x01 CREATE: Create if file doesn't exist.
n 0x02 EXCLUSIVE: Error out if file exists.
n 0x04 READ: Open file for reading.
n 0x08 WRITE: Open file for writing.
n 0x10 TRUNCATE: Truncate file to 0 bytes.
n 0x20 APPEND: Append to end of file.
n 0x40 UNUSED: Unused, set to 0.
n 0x80 SECURE: Create a secure write-only

file.

9-n variable File Name Pathname relative to Path ID.

Success Response

Offset Size Frame Field Description

5 8-bit File System
Command

File open - 0x01

6 8-bit Status Success - 0x00

7 16-bit File Handle Value used to reference file in later
requests. Expires and becomes invalid if not
referenced for over 2 minutes.

9 32-bit File Size File's size or 0xFFFFFFFF if unknown.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 271

File Close - 0x02

Description
Close an open file and release its File Handle.

Request

Offset Size Frame Field Description

5 8-bit File System Command File Close - 0x02

6 16-bit File Handle Value returned from File Open - 0x01 response.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 272

File Read - 0x03

Description
Read the file.

Request

Offset Size
Frame
Field Description

5 8-bit File System
Command

File Read - 0x03

6 16-bit File Handle Value returned from File Open - 0x01 response.

8 32-bit Read
Offset

File position for read, or 0xFFFFFFFF to use the current position.

12 16-bit Bytes To
Read

Number of bytes to read from file, or 0xFFFF to read as many as
possible (limited by file size or maximum response frame size).

Success Response

Offset Size Frame Field Description

5 8-bit File System Command File Read - 0x03

6 8-bit Status Success - 0x00

7 16-bit File Handle Value sent in request.

9 32-bit Data Offset Actual offset of data read from file.

13-n variable Data Data read from the file.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 273

File Write - 0x04

Description
Write to the file.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

File Write - 0x04

6 16-bit File Handle Value returned from File Open - 0x01 response.

8 32-bit Write Offset File position for write, or 0xFFFFFFFF to use the current
position.

12-n variable Data Data to write to file. If empty, frame just refreshes the File
Handle timeout to keep the file open.

Success Response

Offset Size Frame Field Description

5 8-bit File System Command File Write - 0x04

6 8-bit Status Success - 0x00

7 16-bit File Handle Value sent in request.

9 32-bit Current Offset Current offset of file after writing Data from Request.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 274

File Hash - 0x08

Description
Returns a SHA256 hash to verify a file's contents without downloading the entire file. On XBee Cellular
modules, there is a response delay in order to calculate the hash of a non-secure file.

Request

Offset Size Frame Field Description

5 8-bit File System Command File Hash - 0x08

6 16-bit Path ID See Get Path ID - 0x1C for a description.

8-n variable File Name Pathname relative to Path ID.

Success Response

Offset Size Frame Field Description

5 8-bit File System Command File Hash - 0x08

6 8-bit Status Success - 0x0

7-38 32-bytes SHA256 Hash Hash used to verify file contents.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 275

Directory Create - 0x10

Description
Create a directory.

Request

Offset Size Frame Field Description

5 8-bit File System Command Directory Create - 0x10

6 16-bit Path ID See command Get Path ID - 0x1C for
description.

8-n variable Directory Name Pathname relative to Path ID. The
parent directory of the directory to
create must exist, for example, you must
create all intermediate directories via
separate requests.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 276

Directory Open - 0x11

Description
Used with Directory Read to list files and directories in a given directory. To get a listing of entries in a
directory:

1. Send a Directory Open Request.
2. Parse multiple entries from the Response.
3. If the last entry has the ENTRY_IS_LAST flag set, the listing is complete and the Directory

Handle was automatically released.
4. If the listing is not complete, do one of the following:

n Send a Directory Read Request to get additional directory entries
n Send a Directory Close Request to release the Directory Handle.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

Directory Open 0x10

6 16-bit Path ID See command Get Path ID - 0x1C for description.

8-n variable Directory Name Pathname relative to Path ID, or empty to get a file
listing for the Path ID.

Success Response
A Directory Open Request sends a response identical to a Directory Read Request. An empty
directory returns a single entry with only the ENTRY_IS_LAST flag set, and a 0-byte Entry Name. A
response ending with an ENTRY_IS_LAST flag automatically closes the Directory Handle.

Offset Size Frame Field Description

5 8-bit File System
Command

Directory Read - 0x13 or Directory Open - 0x11,
depending on request.

6 16-bit Status Success - 0x00

7 16-bit Directory
Handle

Value returned in initial Directory Open Response.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 277

Offset Size Frame Field Description

9 32-bit File Size/Entry
Flags

File's size in lower 24 bits, combined with the
following flags:

n 0x80000000 (ENTRY_IS_DIR): Entry is a
directory.

n 0x40000000 (ENTRY_IS_SECURE): File is
secure (write-only).

n 0x01000000 (ENTRY_IS_LAST): This is the last
entry.

n Other flags in the top 8 bits (0x3E) are
currently reserved and set to zero.

13-n variable Entry Name File or directory name.

If there is enough room in the frame, there may be additional entries after the first.

n+1 8-bit Null
Terminator

0x00 byte to separate entries

n+2 32-bit File Size and
Flags

Refer to description above.

n+6 variable Entry Name Refer to description above.

Process the entries in a Directory Open Response or Directory Read Response as follows:

n Split the File Size and Flags field into separate File Size and Flags.
n Look for a null terminator after the File Size and Flags field.
n Extract Entry Name as bytes after File Size and Flags and before either the null terminator or

the end of the frame.
n Repeat this sequence if Entry Name had a null terminator and the packet contains

unprocessed entries.
n If the final entry of the frame does not have ENTRY_IS_LAST set, send another Directory Read

Request to get additional entries.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 278

Directory Close - 0x12

Description
The host can send this frame to indicate that it is done reading the directory and no longer needs the
Directory Handle. Note that the Directory Handle is automatically closed and no longer valid after
receiving a Response with the ENTRY_IS_LAST flag set.

Request

Offset Size Frame Field Description

5 8-bit File System Command Directory Close - 0x12

6 16-bit Directory Handle Value returned in initial Directory Open Response.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 279

Directory Read - 0x13

Description
Read entries from the directory.

Request

Offset Size Frame Field Description

5 8-bit File System Command Directory Read - 0x13

6 16-bit Directory Handle Value returned from
previous Directory Open
Response or Directory
Read Response.

Success Response
A Directory Read Request sends a response identical to a Directory Open Request.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 280

Get Path ID - 0x1C

Description
Many commands include a 16-bit field for the Path ID. If set to 0x0000, pathnames in the frame are
relative to the root directory of the filesystem (/). Use the Get Path ID request to generate a Path ID
for any subdirectory of the file system to allow the use of shorter relative pathnames in later
requests.

n If the Path ID field of a Request is 0x0000, the Response contains a newly-allocated Path ID
for use in later Requests.

n If the Path ID field of a Request is non-zero (such as one returned in a previous Get Path ID
Response), the XBee module updates the path for that ID.

n To release a Path ID when no longer needed (instead of waiting for a timeout), send a Request
with the Path ID and a single slash ("/") as the Pathname. Any Get Path ID Request that
resolves to the root directory will release the Path ID and return a 0x0000 ID.

n Allocated Path ID values expire after 2 minutes if not used. You can refresh that timeout by
sending a Get Path ID request with the Path ID and an empty or single period (".") Pathname.

n The full, absolute path of the Path ID is included in the Response only if can fit. Any code used
to process the response needs to take that into account and handle an empty Full Pathname
field.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

Get Path ID - 0x1C

6 16-bit Path ID Either 0x0000 to create a new Path ID, or an existing Path
ID to update its location.

8-n variable Pathname Pathname relative to Path ID.

Success Response

Offset Size Frame Field Description

5 8-bit File System
Command

Get Path ID x 0x1C

6 8-bit Status 0x00 - Success

7 16-bit Path ID Value to use in later File System Requests with relative
pathnames.

9-n variable Full
Pathname

If short enough to fit in the frame, the full pathname (starting
with "/flash"). Deep subdirectories may return an empty field
instead of their Full Pathname. The Full Pathname will never
exceed 255 characters.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 281

Rename - 0x21

Description
Rename a file/directory or move it to a new directory.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

Rename - 0x21

6 16-bit Path ID See command Get Path ID - 0x1C for description.

8-n variable Current Name Pathname of file or directory to rename.

n+1 8-bit Delimiter A single comma (0x2C).

n+2-m variable New Name New name, using a relative path to move file into
another directory.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 282

Delete - 0x2F

Description
Delete files or a directory. The entry must delete all files in a directory before you can delete the
directory.

Request

Offset Size Frame Field Description

5 8-bit File System Command Delete - 0x2F

6 16-bit Path ID See Get Path ID - 0x1C for description

8-n variable Path Name Pathname of file or empty directory to delete.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 283

Volume Info - 0x40

Description
Get volume information: used space, available space, and unusable bytes on volume.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

Volume Info - 0x40

6-n variable Volume Name Name of volume to report on. Currently /flash is the only
supported value.

Success Response

Offset Size Frame Field Description

5 8-bit File System Command Volume Info - 0x40

6 16-bit Status Success - 0x00

7 32-bit Used Bytes Used space on volume.

11 32-bit Free Bytes Available space on volume.

15 32-bit Bad Bytes Unusable bytes on volume.

File system API frames Local File System Request - 0x3B

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 284

Volume Format - 0x4F

Description
Format the space allocated to file storage. This command sends a Volume Info Success Response
when the format completes.

Request

Offset Size Frame Field Description

5 8-bit File System
Command

Volume Format - 0x4F

6-n variable Volume Name Name of volume to format. Currently /flash is the only
supported value.

File system API frames Local File System Response - 0xBB

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 285

Local File System Response - 0xBB

Description
The XBee module sends this frame in response to a Local File System Request (0x3B) frame sent with
a non-zero Frame ID. The contents of the variable-length Response Data field appear in the
documentation for each File System Command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an
API frame.

1 16-bit Length Number of bytes between the
length and checksum.

3 8-bit Frame type Local File System Response -
0xBB

4 8-bit Frame ID Frame ID value from the
corresponding Local File System
Request.

5 8-bit File System Command See File System Commands for
valid command values.

6 8-bit Status See Status Values for description.

7-n variable Response Data Variable content based on File
System Command. Only present
if Status is 0 and the command
has additional data to provide.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes
from offset 3 to this byte
(between length and checksum).

Status Values

Value Command

0x00 Success

0x01 Error

File system API frames Local File System Response - 0xBB

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 286

Value Command

0x02 Invalid File System Command

0x03 Invalid command parameter

0x50 Access denied

0x51 File/Directory already exists

0x52 File/Directory does not exist

0x53 Invalid name

0x54 File operation on directory

0x55 Cannot delete non-empty directory

0x56 Attempt to read past EOF (end of file)

0x57 Hardware failure

0x58 Volume offline/format required

0x59 Volume full

0x5A Operation timed out

0x5B Busy (wait for prior command to complete then try again)

0x5C Resource failure (memory allocation failed, try again)

Troubleshooting

This section contains troubleshooting steps for the XBee Cellular Modem.

Cannot find the serial port for the device 288
Correct a macOS Java error 290
Unresponsive cellular component in Bypass mode 291
Not on expected network after APN change 292
Syntax error at line 1 292
Error Failed to send SMS 292

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 287

Troubleshooting Cannot find the serial port for the device

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 288

Cannot find the serial port for the device

Condition
In XCTU, the serial port that your device is connected to does not appear.

Solution

1. Click the Discover radio modules button .
2. Select all of the ports to be scanned.
3. Click Next and then Finish. A dialog notifies you of the devices discovered and their details.

4. Remove the development board from the USB port and view which port name no longer
appears in the Discover radio devices list of ports. The port name that no longer appears is
the correct port for the development board.

Troubleshooting Cannot find the serial port for the device

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 289

Other possible issues
Other reasons that the XBee Cellular Modem is not discoverable include:

1. If you accidentally have the loopback pins jumpered.
2. You may not have a driver installed. If you do not have a driver installed, the item will have an

exclamation point icon next to it in the Windows Device Manager.
3. You may not be using an updated FTDI driver.

a. Click here to download the drivers for your operating system.
b. This may require you to reboot your computer.
c. Disconnect the power and USB from the XBIB-U-DEV board and reconnect it.

4. If you have a driver installed and updated but still have issues, on Windows 10 you may have to
enable VCP on the driver; see Enable Virtual COM port (VCP) on the driver.

Enable Virtual COM port (VCP) on the driver
On Windows 10 computers, if XCTU does not see the devices you have attached to a PC, you may need
to enable VCP on the USB driver.
To enable VCP:

1. Click the Search button.
2. Type Device Manager to search for it.
3. Click Universal Serial Bus controllers.
4. If it displays more than one USB controller, unplug the XBee Cellular Modem and plug it back in

to make sure you choose the correct one.
5. Right-click the USB controller and select Properties; a dialog displays.
6. Select the Advanced tab.
7. Check Load VCP.
8. Click OK.
9. Unplug the board and plug it back in.

https://support.microsoft.com/en-us/help/4028443/windows-update-drivers-in-windows-10
http://www.ftdichip.com/Drivers/VCP.htm

Troubleshooting Correct a macOS Java error

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 290

Correct a macOS Java error
When you use XCTU on macOS computer, you may encounter a Java error.

Condition
When opening XCTU for the first time on a macOS computer, you may see the following error:

Solution
1. Click More info to open a browser window.
2. Click Download to get the file javaforosx.dmg.
3. Double-click on the downloaded javaforosx.dmg.
4. In the dialog, double-click the JavaForOSX.pkg and follow the instructions to install Java.

Troubleshooting Unresponsive cellular component in Bypass mode

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 291

Unresponsive cellular component in Bypass mode
When in Bypass mode, the XBee Cellular Modem does not automatically reset or reboot the cellular
component if it becomes unresponsive.

Condition
In Bypass mode, the XBee Cellular Modem does not respond to commands.

Solution
1. Query the AI (Association Indication) parameter to determine whether the cellular component

is connected to the XBee Cellular Modem software. If AI is 0x2F, Bypass mode should work. If
not, look at the status codes in AI (Association Indication) for guidance.

2. You can send the !R (Modem Reset) command to reset only the cellular component.

Troubleshooting Not on expected network after APN change

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 292

Not on expected network after APN change

Condition
The XBee Cellular Modem is not on the expected network after a change to the AN (Access Point
Name) command.

Solution
Send ATNR0 to reset Internet connectivity. See NR (Network Reset) for more information.

Syntax error at line 1
You may get a syntax error at line 1 error after pasting example MicroPython code and pressing
Ctrl+D.

Solution
This commonly happens when you accidentally type a character at the beginning of line 1 before
pasting the code.

Error Failed to send SMS
In MicroPython, you consistently get Error Failed to send SMS messages.

Solution
Your device cannot connect to the cell network. The reason may be:

1. The antenna is improperly or loosely connected.
2. The device is at a location where cellular service cannot reach. If the device is connected to the

network, the red LED blinks about twice in a second. If it is not connected it does not blink; see
Associate LED functionality.

3. You SIM card is out of SMS text quota.
4. The device is not getting enough current, for example if power is being supplied only by USB to

the XBIB development board, rather than using an additional external power supply.

Regulatory information

Modification statement 294
Interference statement 294
FCC notices 294
FCC Class B digital device notice 294
Labeling requirements for the host device 295
FCC publication 996369 related information 295

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 293

Regulatory information Modification statement

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 294

Modification statement
Digi International has not approved any changes or modifications to this device by the user. Any
changes or modifications could void the user’s authority to operate the equipment.
Digi International n’approuve aucune modification apportée à l’appareil par l’utilisateur, quelle qu’en soit
la nature. Tout changement ou modification peuvent annuler le droit d’utilisation de l’appareil par
l’utilisateur.

Interference statement
This device complies with Part 15 of the FCC Rules and Industry Canada license-exempt RSS standard
(s). Operation is subject to the following two conditions: (1) this device may not cause interference,
and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de
licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de
brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d'en compromettre le fonctionnement.

FCC notices
IMPORTANT: XBee modules have been certified by the FCC for use with other products without any
further certification (as per FCC section 2.1091). Modifications not expressly approved by Digi could
void the user's authority to operate the equipment.
IMPORTANT: OEMs must test final product to comply with unintentional radiators (FCC section 15.107
& 15.109) before declaring compliance of their final product to Part 15 of the FCC Rules.
IMPORTANT: The RF module has been certified for remote and base radio applications. If the module
will be used for portable applications, the device must undergo SAR testing.
This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference in a residential installation. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in accordance with the instructions, may
cause harmful interference to radio communications. However, there is no guarantee that
interference will not occur in a particular installation.
If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures: Re-orient or relocate the receiving antenna,
Increase the separation between the equipment and receiver, Connect equipment and receiver to
outlets on different circuits, or Consult the dealer or an experienced radio/TV technician for help.

FCC Class B digital device notice
This equipment has been tested and found to comply with the limits for a Class B digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference in a residential installation. This equipment generates, uses and can
radiate radio frequency energy and, if not installed and used in accordance with the instructions, may
cause harmful interference to radio communications. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause harmful
interference to radio or television reception, which can be determined by turning the equipment off

Regulatory information Labeling requirements for the host device

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 295

and on, the user is encouraged to try to correct the interference by one or more of the following
measures:

n Reorient or relocate the receiving antenna.
n Increase the separation between the equipment and receiver.
n Connect the equipment into an outlet on a circuit different from that to which the receiver is

connected.
n Consult the dealer or an experienced radio/TV technician for help.

Labeling requirements for the host device
The device shall be properly labeled to identify the product within the host device. For more
information, see the Regulatory Approvals table.
The certification labels of the module shall be clearly visible at all times when installed in the host
device, otherwise the host device must be labeled to display the FCC ID and IC of the module,
preceded by the words "Contains transmitter module", or the word "Contains", or similar wording
expressing the same meaning, as follows:

Contains FCC ID: RI7LE866SV1
Contains IC: 5131A-LE866SV1
Contains FCC ID: RI7LE866SV1A
Contains IC: 5131A-LE866SV1A

L'appareil hôte doit être étiqueté comme il faut pour permettre l'identification des modules qui s'y
trouvent. Pour plus d'informations, reportez-vous au tableau des approbations réglementaires.
L'étiquettes de certification du module donné doit être posée sur l'appareil hôte à un endroit bien en vue en
tout temps. En l'absence d'étiquette, l'appareil hôte doit porter une étiquette donnant le FCC ID et le IC du
module, précédé des mots « Contient un module d'émission », du mot « Contient » ou d'une formulation
similaire exprimant le même sens, comme suit:

Contains FCC ID: RI7LE866SV1
Contains IC: 5131A-LE866SV1
Contains FCC ID: RI7LE866SV1A
Contains IC: 5131A-LE866SV1A
CAN ICES-3 (B) / NMB-3 (B)

This Class B digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de classe B est conforme à la norme canadienne ICES-003.

FCC publication 996369 related information
In publication 996369 section D03, the FCC requires information concerning a module to be presented
by OEM manufacturers. This section assists in answering or fulfilling these requirements.

2.1 General
No requirements are associated with this section.

2.2 List of applicable FCC rules
This module conforms to FCC Parts 27(cellular).

Regulatory information FCC publication 996369 related information

Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide 296

2.3 Summarize the specific operational use conditions
Certain approved antennas require attenuation for operation. For the XBee Cellular Modem, see
Antenna specifications.
Host product user guides should include the antenna table if end customers are permitted to select
antennas.

2.4 Limited module procedures
Not applicable.

2.5 Trace antenna designs
While it is possible to build a trace antenna into the host PCB, this requires at least a Class II
permissive change to the FCC grant which includes significant extra testing and cost. If an embedded
trace or chip antenna is desired contact a Digi sales representative for information on how to engage
with a lab to get the modified FCC grant.

2.6 RF exposure considerations
For RF exposure considerations see RF exposure.
Host product manufacturers need to provide end-users a copy of the “RF Exposure” section of the
manual: RF exposure.

2.7 Antennas
A list of approved antennas is provided for the XBee Cellular Modem. See Antenna specifications.

2.8 Label and compliance information
Host product manufacturers need to follow the sticker guidelines outlined in Labeling requirements
for the host device .

2.9 Information on test modes and additional testing requirements
Contact a sales representative for information on how to configure test modes for the XBee Cellular
Modem.

2.10 Additional testing, Part 15 Subpart B disclaimer
All final host products must be tested to be compliant to FCC Part 15 Subpart B standards. While the
XBee Cellular Modem was tested to be complaint to FCC unintentional radiator standards, FCC Part
15 Subpart B compliance testing is still required for the final host product. This testing is required for
all end products, and XBee Cellular Modem Part 15 Subpart B compliance does not affirm the end
product’s compliance.
See FCC notices.

	Digi XBee Cellular LTE Cat 1 Embedded Modem User Guide
	Applicable firmware and hardware
	Safety instructions
	XBee modules

	SIM cards
	Cellular service

	Get started with the XBee Cellular Modem
	Identify the kit contents
	Connect the hardware
	Install and upgrade XCTU
	Add a device to XCTU

	Update the device and cellular firmware using XCTU
	Check for cellular registration and connection

	XBee connection examples
	Connect to the Echo server
	Connect to the ELIZA server
	Connect to the Daytime server
	Send an SMS message to a phone
	Perform a (GET) HTTP request
	Connect to a TCP/IP address
	Software libraries
	Debugging

	Get started with MicroPython
	About MicroPython
	Why use MicroPython

	MicroPython on the XBee Cellular Modem
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	Troubleshooting

	Example: hello world
	Example: turn on an LED
	Example: code a request help button
	Enter MicroPython paste mode
	Catch a button press
	Send a text (SMS) when the button is pressed
	Add the time the button was pressed

	Example: debug the secondary UART
	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux

	Get started with Digi Remote Manager
	Create a Remote Manager account and add devices
	Create a Remote Manager account
	Add an XBee Cellular Modem to Remote Manager
	Verify the connection between a device and Remote Manager

	Configure Remote Manager features by scheduling tasks
	Overview: Create a schedule for a set of tasks
	Examples
	Example: Read settings and state using Remote Manager
	Example: Configure a device from Remote Manager using XML
	Example: Schedule a task to update the device firmware using Remote Manager
	Example: Update MicroPython from Remote Manager using XML

	Manage data in Remote Manager
	Review device status information from Remote Manager
	Manage secure files in Remote Manager

	Remote Manager reference
	Enable SM/UDP
	TCP connection
	Disconnect
	Configure XBee settings within Remote Manager

	Examples: IOT protocols with transparent mode
	Get started with CoAP
	CoAP terms
	CoAP quick start example
	Configure the device
	Example: manually perform a CoAP request
	Example: use Python to generate a CoAP message

	Get started with MQTT
	Example: MQTT connect
	Send a connect packet
	Example: send messages (publish) with MQTT
	Example: receive messages (subscribe) with MQTT
	Use MQTT over the XBee Cellular Modem with a PC

	Update the firmware
	Create a plan for device and cellular component firmware updates
	Update the device and the cellular firmware using XCTU
	Update the device and cellular firmware using XCTU

	Update the device firmware
	Update the firmware from the Devices page in Remote Manager
	Update the firmware using web services in Remote Manager
	Use a host processor to update the modem firmware for XBee devices over UART

	Update the cellular firmware
	Update the cellular component firmware using Remote Manager
	Update the cellular firmware using the API

	Technical specifications
	Interface and hardware specifications
	RF characteristics
	Networking specifications
	Power requirements
	Power consumption
	Electrical specifications
	Regulatory approvals

	Hardware
	Mechanical drawings
	Pin signals
	Pin connection recommendations

	XBee header connector requirements
	RSSI PWM
	SIM card
	Associate LED functionality
	Development boards
	XBIB-U-DEV reference
	XBIB-CU-TH reference
	XBIB-C-GPS reference
	Interface with the XBIB-C-GPS module

	Antenna recommendations
	Antenna specifications
	Antenna connections
	Antenna placement
	RF exposure

	Design recommendations
	Power supply considerations
	Add a capacitor to the RESET line
	Heat considerations and testing
	Heat sink guidelines
	Bolt-down style
	Adhesive style heat sink

	Add a fan to provide active cooling
	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configurations on a device

	Clean shutdown
	SD (Shutdown) command

	SIM cards

	Cellular connection process
	Connecting
	Cellular network
	Data network connection

	Data communication with remote servers (TCP/UDP)
	Disconnecting

	Modes
	Select an operating mode
	Transparent operating mode
	API operating mode
	Bypass operating mode (DEPRECATED)
	Enter Bypass operating mode
	Leave Bypass operating mode
	Restore cellular settings to default in Bypass operating mode

	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	MicroPython mode

	Sleep modes
	About sleep modes
	Normal mode
	Pin sleep mode
	Cyclic sleep mode
	Cyclic sleep with pin wake up mode
	Airplane mode
	Connected sleep mode
	The sleep timer
	MicroPython sleep behavior

	Serial communication
	Serial interface
	Serial data
	UART data flow
	Serial buffers
	CTS flow control
	RTS flow control

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation
	Data format

	File system
	Overview of the file system
	Directory structure
	Paths
	Secure files

	XCTU interface
	Encrypt files

	SMS behaviors
	SMS encoding

	Socket behavior
	Supported sockets
	Best practices when using sockets
	Sockets and Remote Manager
	Sockets and API mode

	Socket timeouts
	Socket limits in API mode
	UDP datagram size limits
	Enable incoming TCP connections
	API mode behavior for outgoing TCP and TLS connections
	API mode behavior for outgoing UDP data
	API mode behavior for incoming TCP connections
	API mode behavior for incoming UDP data
	Transparent mode behavior for outgoing TCP and TLS connections
	Transparent mode behavior for outgoing UDP data
	Transparent mode behavior for incoming TCP connections
	Transparent mode behavior for incoming UDP connections

	Extended Socket frames
	Examples
	Available Extended Socket frames
	Extended Socket example: Single HTTP Connection
	Send a Socket Create frame
	Receive a Socket Create response
	Send Socket Connect
	Receive a Socket Connect Response
	Receive a Socket Status
	Send HTTP Request using Socket Send frame
	Receive TX Status
	Receive one or more Receive Data frames
	Receive Socket Status indicating closed connection

	Extended Socket example: UDP
	Send a Socket Create frame
	Receive a Socket Create response
	Bind local source addres
	Receive Bind/Listen Response
	Send to Digi echo server
	Receive TX Status
	Receive echoed data
	Send to Digi time server
	Receive TX Status
	Receive daytime value
	Close the socket
	Receive close response

	Extended Socket example: TCP Listener
	Send a Socket Create frame
	Receive a Socket Create response
	Designate the socket as a listener
	Receive a Socket Bind/Listen Response
	Making a connection to the listener socket
	Receiving Data from the new socket
	Receive a Socket Status indicating closed connection

	Transport Layer Security (TLS)
	Specifying TLS keys and certificates
	Transparent mode and TLS
	API mode and TLS
	Key formats
	Certificate limitations
	Cipher suites
	Server Name Indication (SNI)
	Secure the connection between an XBee and Remote Manager with server authenti...
	Step 1: Get the certificate
	Step 2: Configure device
	Step 3: Verify that authentication is being performed

	AT commands
	Special commands
	AC (Apply Changes)
	FR (Force Reset)
	RE command
	SD (Shutdown)
	WR (Write)
	HI (Hardware Identity)

	Cellular commands
	PH (Phone Number)
	S# (ICCID)
	IM (IMEI)
	II (Subscriber identity)
	MN (Operator)
	MV (Modem Firmware Version)
	MU (Modem firmware revision number)
	DB (Cellular Signal Strength)
	DT (Cellular Network Time)
	AN (Access Point Name)
	AM (Airplane Mode)
	OA (Operating APN)
	DV (Secondary Antenna Function Switch)
	SQ (Reference Signal Received Quality)
	SW (Reference Signal Received POWER)
	PN (SIM PIN)
	PK (SIM PUK)
	CU (Cellular user name)
	CW (Cellular password)
	FC (Frequency Channel Number)
	OT (Operating Technology)

	Network commands
	IP (IP Protocol)
	TL (TLS Protocol Version)
	$0 (TLS Profile 0)
	$1 (TLS Profile 1)
	$2 (TLS Profile 2)
	TM (IP Client Connection Timeout)
	TS (IP Server Connection Timeout)
	DO (Device Options)
	PG (Ping)

	Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	MY (Module IP Address)
	P# (Destination Phone Number)
	N1 (DNS Address)
	N2 (DNS Address)
	DL (Destination Address)
	OD (Operating Destination Address)
	DE (Destination port)
	C0 (Source Port)
	LA (Lookup IP Address of FQDN)

	Serial interfacing commands
	BD (Baud Rate)
	NB (Parity)
	SB (Stop Bits)
	RO (Packetization Timeout)
	TD (Text Delimiter)
	FT (Flow Control Threshold)
	AP (API Enable)

	I/O settings commands
	D0 (DIO0/AD0)
	D1 (DIO1/AD1)
	D2 (DIO2/AD2)
	D3 (DIO3/AD3)
	D4 (DIO4)
	D5 (DIO5/ASSOCIATED_INDICATOR)
	D6 (DIO6/RTS)
	D7 (DIO7/CTS)
	D8 (DIO8/SLEEP_REQUEST)
	D9 (DIO9/ON_SLEEP)
	P0 (DIO10/PWM0 Configuration)
	P1 (DIO11/PWM1 Configuration)
	P2 (DIO12 Configuration)
	PD (Pull Direction)
	PR (Pull-up/down Resistor Enable)
	M0 (PWM0 Duty Cycle)

	I/O sampling commands
	TP (Temperature)
	IS (Force Sample)

	Sleep commands
	SM (Sleep Mode)
	SP (Sleep Period)
	ST (Wake Time)
	SO (Sleep Options)

	Command mode options
	CC (Command Sequence Character)
	CT (Command Mode Timeout)
	CN (Exit Command mode)
	GT (Guard Times)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	Firmware version/information commands
	VR (Firmware Version)
	VL (Verbose Firmware Version)
	HV (Hardware Version)
	HS (Hardware Series)
	%C (Hardware/Software Compatibility)
	CK (Configuration CRC)
	AI (Association Indication)
	FI (FTP OTA Update Indication)
	FO (FTP OTA command)

	Diagnostic interface commands
	DI (Remote Manager Indicator)
	CI (Protocol/Connection Indication)
	AS (Active scan for network environment data)

	Execution commands
	NR (Network Reset)
	!R (Modem Reset)

	File system commands
	Error responses
	ATFS (File System)
	ATFS PWD
	ATFS CD directory
	ATFS MD directory
	ATFS LS [directory]
	ATFS PUT filename
	ATFS XPUT filename
	ATFS HASH filename
	ATFS GET filename
	ATFS MV source_path dest_path
	ATFS RM file_or_directory
	ATFS INFO
	ATFS FORMAT confirm

	Remote Manager commands
	MO (Remote Manager Options)
	DF (Remote Manager Status Check Interval)
	EQ (Remote Manager FQDN)
	K1 (Remote Manager Server Send Keepalive)
	K2 (Remote Manager Device Send Keepalive)
	$D (Remote Manager certificate)
	ER (Remote Manager TCP Port Override)
	ES (Remote Manager UDP Port Override)
	MT (Remote Manager Idle Timeout)

	System commands
	KL (Device Location)
	KC (Contact Information)
	KP (Device Description)

	Socket commands
	SI (Socket Info)

	Operate in API mode
	API mode overview
	Use the AP command to set the operation mode
	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	API frames
	AT Command - 0x08
	AT Command: Queue Parameter Value - 0x09
	Transmit (TX) SMS - 0x1F
	Transmit (TX) Request: IPv4 - 0x20
	Tx Request with TLS Profile - 0x23
	AT Command Response - 0x88
	Transmit (TX) Status - 0x89
	Modem Status - 0x8A
	Receive (RX) Packet: SMS - 0x9F
	Receive (RX) Packet: IPv4 - 0xB0
	User Data Relay - 0x2D
	Example use cases

	User Data Relay Output - 0xAD
	FW Update - 0x2B
	FW Update Response - 0xAB
	Socket Create - 0x40
	Socket Create Response - 0xC0
	Socket Option Request - 0x41
	Socket Option Response - 0xC1
	Socket Connect - 0x42
	Socket Connect Response - 0xC2
	Socket Close - 0x43
	Socket Close Response - 0xC3
	Socket Send (Transmit) - 0x44
	Socket SendTo (Transmit Explicit Data): IPv4 - 0x45
	Socket Bind/Listen - 0x46
	Socket Listen Response - 0xC6
	Socket New IPv4 Client - 0xCC
	Socket Receive - 0xCD
	Socket Receive From: IPv4 - 0xCE
	Socket Status - 0xCF

	File system API frames
	Local File System Request - 0x3B
	File Open - 0x01
	File Close - 0x02
	File Read - 0x03
	File Write - 0x04
	File Hash - 0x08
	Directory Create - 0x10
	Directory Open - 0x11
	Directory Close - 0x12
	Directory Read - 0x13
	Get Path ID - 0x1C
	Rename - 0x21
	Delete - 0x2F
	Volume Info - 0x40
	Volume Format - 0x4F

	Local File System Response - 0xBB

	Troubleshooting
	Cannot find the serial port for the device
	Condition
	Solution
	Other possible issues
	Enable Virtual COM port (VCP) on the driver

	Correct a macOS Java error
	Condition
	Solution

	Unresponsive cellular component in Bypass mode
	Condition
	Solution

	Not on expected network after APN change
	Condition
	Solution

	Syntax error at line 1
	Solution

	Error Failed to send SMS
	Solution

	Regulatory information
	Modification statement
	Interference statement
	FCC notices
	FCC Class B digital device notice
	Labeling requirements for the host device
	FCC publication 996369 related information
	2.1 General
	2.2 List of applicable FCC rules
	2.3 Summarize the specific operational use conditions
	2.4 Limited module procedures
	2.5 Trace antenna designs
	2.6 RF exposure considerations
	2.7 Antennas
	2.8 Label and compliance information
	2.9 Information on test modes and additional testing requirements
	2.10 Additional testing, Part 15 Subpart B disclaimer

