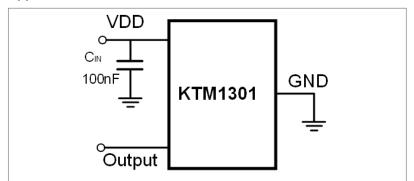


KTM1301

Omnipolar Switching Sensor with CMOS output interface

KTM1301 is a magnetic switch sensor integrating tunneling magnetore-sistance (TMR) technology and CMOS technology. With the characteristics of high precision, high speed, low power consumption and high sensitivity, it is suitable for magnetic field switch detection of industrial electronics and consumer electronics. The internal circuit of the chip includes a voltage generator, a comparator, a digital logic control module, a threshold trimming module and a CMOS output circuit. KTM1301 has wide working voltage range and wide working temperature range. This series of chips can provide a variety of magnetic field thresholds, switching operating frequencies and packaging forms to suit various applications.

KTM1301 is an omnipolar magnetic field detection switch, which can provide omnipolar magnetic response with extremely low current consumption. It detects the magnetic field parallel to the surface of the chip package. When the magnetic field strength is greater than the operating point (B_{OP}), the switch outputs a low level; when the magnetic field strength is lower than the release point (B_{RP}), the switch outputs a high level . The chip can operate from a supply voltage range of 1.8V to 5.5V and comes in standard SOT-23-3L and TO-92S packages.


In accordance with the absolute maximum rating system (IEC60134).

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	-0.3	6.0	V
l _{Output}	Output drive current	-	5	mA
В	Withstand magnetic field <5 min	-	3000	G
PD	Package power consumption	-	400	W
T _{junction}	Maximum junction temperature	-	+150	°C
T _{stg(others)}	Storage temperature	-50	+150	°C
T _{working}	Working temperature	-40	+85	°C
T _{reflow}	Reflow soldering temperature	-	260	°C
ESD _{HBM}	Human body model ESD	-	8000	V

Stresses beyond those listed under "Absolute maximum ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Application circuit schematic

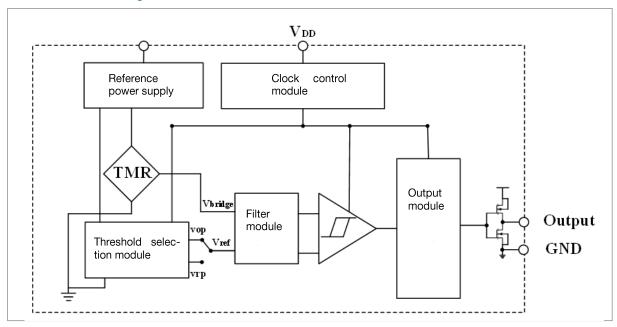
Note: In order to filter the noise at the power supply end of the chip, a 100nF capacitor, and the capacitor should be as close as possible to the VDD pin.

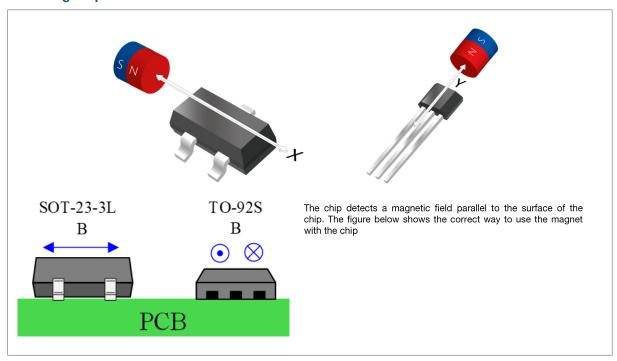
Features

- Ultra low power consumption
- Wide operating voltage range
- Selectable Magnetic Field Threshold
- Magnetic Type: Omni-polar
- CMOS output interface
- Operation temperature range from -40 °C to +85 °C
- Excellent ESD performance

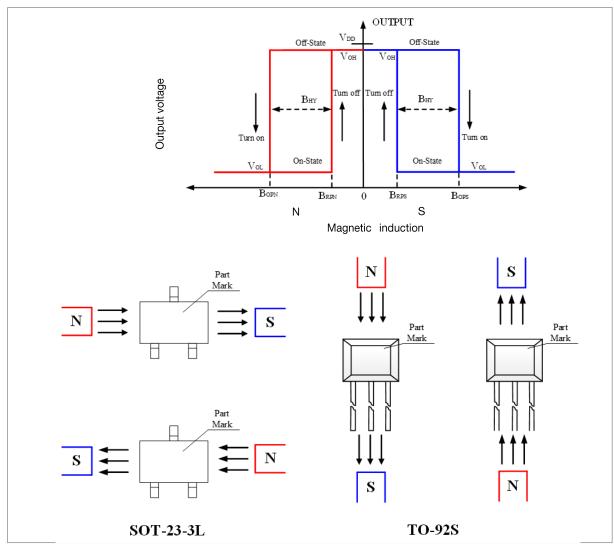
Application

- Water meter, gas meter, flow meter
- non-contact detection
- Electronic lock, valve position detection
- Laptop and Tablet Switch Detection
- TWS headset, mobile phone




KTM1301.DSE.00Data SheetSubject to technical changes© SensitecPage 1 of 9September 24th 2024

Functional block diagram



Switching output characteristics

Output characteristics

Electrical Data

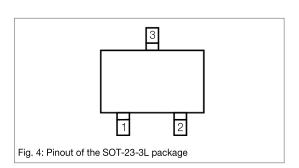
 $T_{amb} = +25$ °C, $V_{DD} = 3.0$ V; unless otherwise specified.

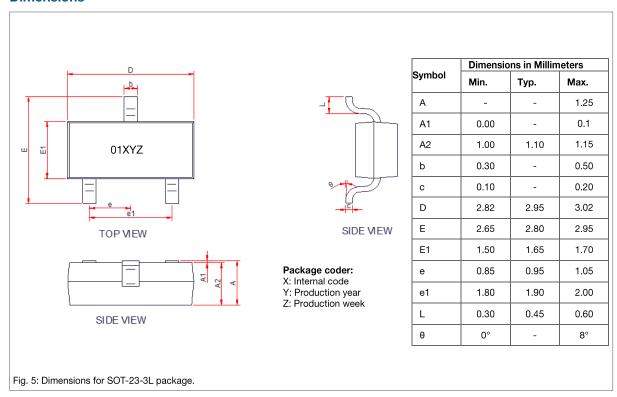
Symbol	Parameter	Conditions	min.	typ.	max.	Unit
V _{CC}	Supply voltage	working status	1.8	5.0	5.5	V
V _{OL}	Output low level	I _{OUT} = 1mA	-	0.015	0.1	V
V_{OH}	Output high level	I _{OUT} = 1mA	V _{DD} - 0.1	V _{DD} - 0.005	-	V
I _{DD,Avg}	Average current	TA=+25 °C , V _{DD} = 3.0 V	-	160.0	-	nA
I _{DD,Awake}	Awake state current	TA=+25 °C , V _{DD} = 3.0 V	-	1.9	-	μΑ
I _{DD,Sleep}	Sleep state current	TA=+25 °C , V _{DD} = 3.0 V	-	148.0	-	nA
T _{Awake}	Wake up time	Working status	-	40.0	-	μs
T _{Period}	Cycle	Working status	-	20.0	-	ms
Fs	Operating frequency 1)	Working status	-	5000	-	Hz

^{1) .}Only for continous working version.

Magnetic parameters

 $T_{amb} = +25$ °C, $V_{CC} = 3.0$ V; unless otherwise specified.

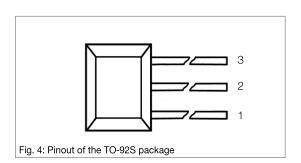

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
KTM1301XA series			'				
B _{OPS}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	40	45	50		
B _{RPS}	Magnetic release point	TA=+25°C , VDD = 3.0V	31	36	41		
B _{OPN}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	-50	-45	-40	Gauss	
B _{RPN}	Magnetic release point	TA=+25°C , VDD = 3.0V	-41	-36	-31		
B _{HY} (B _{OPX} - B _{RPX})	Hysteresis		-	9	-		
KTM1301XB series							
B _{OPS}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	28	30	36		
B _{RPS}	Magnetic release point	TA=+25°C , VDD = 3.0V	16	21	26		
B _{OPN}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	-36	-30	-26	Gauss	
B _{RPN}	Magnetic release point	TA=+25°C , VDD = 3.0V	-26	-21	-16		
B _{HY} (B _{OPX} - B _{RPX})	Hysteresis		-	9	-		
KTM1301XC series						,	
B _{OPS}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	15	18	24		
B _{RPS}	Magnetic release point	TA=+25°C , VDD = 3.0V	9	12	15	-	
B _{OPN}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	-24	-18	-15	Gauss	
B _{RPN}	Magnetic release point	TA=+25°C , VDD = 3.0V	-15	-12	-9	-	
B _{HY} (B _{OPX} - B _{RPX})	Hysteresis		-	6	-	-	
KTM1301XD series						,	
B _{OPS}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	6	9	12		
B _{RPS}	Magnetic release point	TA=+25°C , VDD = 3.0V	3	6	9	-	
B _{OPN}	Magnetic field operating point	TA=+25°C , VDD = 3.0V	-12	-9	-6	Gauss	
B _{RPN}	Magnetic release point	TA=+25°C , VDD = 3.0V	-9	-6	-3	-	
B _{HY} (B _{OPX} - B _{RPX})	Hysteresis		-	3	-	1	

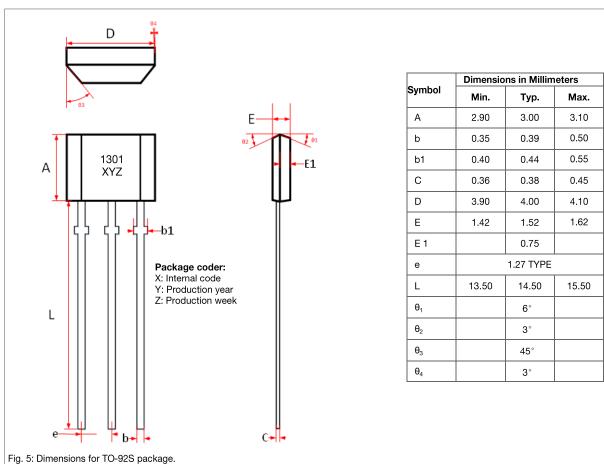

SOT-23-3L

Pinout

Pad	Symbol	Parameter
1	VDD	Supply voltage
2	Output	Output voltage
3	GND	Ground

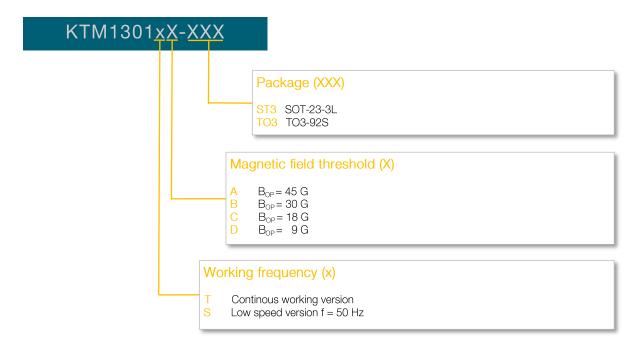
Dimensions




TO-92S

Pinout

Pad	Symbol	Parameter
1	Output	Output voltage
2	GND	Ground
3	VDD	Supply voltage



Dimensions

Additional Information on Ordering Code

Ordering information

Model	Package form	Pin count	Magnetic Field Threshold (Bop)	Operating frequency	Temperature
KTM1301TA -ST3	SOT-23-3L	3	45 Gauss	Continuous	-40°C to +85°C
KTM1301TB-ST3	SOT-23-3L	3	30Gauss	Continuous	-40°C to +85°C
KTM1301TC-ST3	SOT-23-3L	3	18 Gauss	Continuous	-40°C to +85°C
KTM1301TD-ST3	SOT-23-3L	3	9 Gauss	Continuous	-40°C to +85°C
KTM1301SA-ST3	SOT-23-3L	3	45 Gauss	50Hz	-40°C to +85°C
KTM1301SB-ST3	SOT-23-3L	3	30 Gauss	50Hz	-40°C to +85°C
KTM1301SC-ST3	SOT-23-3L	3	18 Gauss	50Hz	-40°C to +85°C
KTM1301SD-ST3	SOT-23-3L	3	9 Gauss	50Hz	-40°C to +85°C
KTM1301TA-TO3	TO-92S	3	45 Gauss	Continuous	-40°C to +85°C
KTM1301TB-TO3	TO-92S	3	30 Gauss	Continuous	-40°C to +85°C
KTM1301TC-TO3	TO-92S	3	18 Gauss	Continuous	-40°C to +85°C
KTM1301TD-TO3	TO-92S	3	9 Gauss	Continuous	-40°C to +85°C
KTM1301SA-TO3	TO-92S	3	45 Gauss	50Hz	-40°C to +85°C
KTM1301SB-TO3	TO-92S	3	30 Gauss	50Hz	-40°C to +85°C
KTM1301SC-TO3	TO-92S	3	18 Gauss	50Hz	-40°C to +85°C
KTM1301SD-TO3	TO-92S	3	9 Gauss	50Hz	-40°C to +85°C

General Information

Product Status

Article Status			
KTM1301	The product is in series production.		
Note	The status of the product may have changed since this data sheet was published. The latest information is available on the internet at www.sensitec.com.		

Disclaimer

Sensitec GmbH reserves the right to make changes, without notice, in the products, including software, described or contained herein in order to improve design and/or performance. Information in this document is believed to be accurate and reliable. However, Sensitec GmbH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Sensitec GmbH takes no responsibility for the content in this document if provided by an information source outside of Sensitec products. In no event shall Sensitec GmbH be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) irrespective the legal base the claims are based on, including but not limited to tort (including negligence), warranty, breach of contract, equity or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Sensitec product aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the General Terms and Conditions of Sale of Sensitec GmbH. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Unless otherwise agreed upon in an individual agreement Sensitec products sold are subject to the General Terms and Conditions of Sales as published at www.sensitec.com. The use and/or application of our products in a military end use is explicitly prohibited. In the event of infringements, we reserve the right to take legal action, including but not limited to the assertion of claims for damages and/or the immediate termination of the business relationship.

General Information

Application Information

Applications that are described herein for any of these products are for illustrative purposes only. Sensitec GmbH makes no representation or warranty - whether expressed or implied - that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Sensitec products, and Sensitec GmbH acliability for any assistance with applications or customer design. It is customer's sole responsibility to determine whether the Sensitec product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's party customer(s). Customers should provide appropriate design and safeguards to minimize the risks associated with their applications and products. Sensitec GmbH does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Sensitec products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Sensitec does not accept any liability in this respect.

Life Critical Applications

These products are not qualified for use in life support appliances, aeronautical applications or devices or systems where malfunction of these products can reasonably be expected to result in personal injury.

Copyright © by Sensitec GmbH, Germany

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written agreement of the copyright owner. The information in this document is subject to change without notice. Please observe that typical values cannot be guaranteed. Sensitec GmbH does not assume any liability for any consequence of its use.

Changelist

Version	Description of the Change	
KTM1301.DSE.00	Original (pp. 1-7)	09/2014

Sensitec GmbH

Schanzenfeldstr. 2 • 35578 Wetzlar • Germany Tel +49 (0) 6441 5291-0 • Fax +49 (0) 6441 5291-117 sensitec@sensitec.com • www.sensitec.com